Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Lipids Health Dis ; 23(1): 144, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760797

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS: Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS: In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION: Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.


Assuntos
Células 3T3-L1 , Tecido Adiposo Branco , Caquexia , Elongases de Ácidos Graxos , Neoplasias , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Camundongos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Masculino , Feminino , Ácido Palmítico/metabolismo , Lipogênese/genética , Pessoa de Meia-Idade , Ácidos Graxos/metabolismo
2.
J Allergy Clin Immunol ; 151(4): 1067-1080.e9, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36592705

RESUMO

BACKGROUND: Elongation of very-long-chain fatty acids protein 6 (ELOVL6), an enzyme regulating elongation of saturated and monounsaturated fatty acids with C12 to C16 to those with C18, has been recently indicated to affect various immune and inflammatory responses; however, the precise process by which ELOVL6-related lipid dysregulation affects allergic airway inflammation is unclear. OBJECTIVES: This study sought to evaluate the biological roles of ELOVL6 in allergic airway responses and investigate whether regulating lipid composition in the airways could be an alternative treatment for asthma. METHODS: Expressions of ELOVL6 and other isoforms were examined in the airways of patients who are severely asthmatic and in mouse models of asthma. Wild-type and ELOVL6-deficient (Elovl6-/-) mice were analyzed for ovalbumin-induced, and also for house dust mite-induced, allergic airway inflammation by cell biological and biochemical approaches. RESULTS: ELOVL6 expression was downregulated in the bronchial epithelium of patients who are severely asthmatic compared with controls. In asthmatic mice, ELOVL6 deficiency led to enhanced airway inflammation in which lymphocyte egress from lymph nodes was increased, and both type 2 and non-type 2 immune responses were upregulated. Lipidomic profiling revealed that the levels of palmitic acid, ceramides, and sphingosine-1-phosphate were higher in the lungs of ovalbumin-immunized Elovl6-/- mice compared with those of wild-type mice, while the aggravated airway inflammation was ameliorated by treatment with fumonisin B1 or DL-threo-dihydrosphingosine, inhibitors of ceramide synthase and sphingosine kinase, respectively. CONCLUSIONS: This study illustrates a crucial role for ELOVL6 in controlling allergic airway inflammation via regulation of fatty acid composition and ceramide-sphingosine-1-phosphate biosynthesis and indicates that ELOVL6 may be a novel therapeutic target for asthma.


Assuntos
Asma , Ceramidas , Animais , Camundongos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Ovalbumina/efeitos adversos
3.
Metabolomics ; 19(2): 6, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645548

RESUMO

INTRODUCTION: Lipid metabolism participates in various biological processes such as proliferation, apoptosis, migration, invasion, and maintenance of membrane homeostasis of prostate tumor cells. Bufadienolides, the active ingredients of Chansu, show a robust anti-proliferative effect against prostate cancer cells in vitro, but whether bufadienolides could regulate the lipid metabolism in prostate cancer has not been evaluated. OBJECTIVES: Our study explored the regulatory effects of bufadienolides on lipid metabolism in human prostate carcinoma cells (PC-3). METHODS: Untargeted lipidomics and transcriptomics were combined to study the effect of different bufadienolides interventions on lipid and gene changes of PC-3 cells. The key genes related to lipid metabolism and prostate cancer development were verified by qPCR and western blotting. RESULTS: Lipidomic analysis showed that the active bufadienolides significantly downregulated the content of long-chain lipids of PC-3 cells. Based on transcriptomic and qPCR analyses, many genes related to lipid metabolism were significantly regulated by active bufadienolides, such as ELOVL6, CYP2E1, GAL3ST1, CERS1, PLA2G10, PLD1, SPTLC3, and GPX2. Bioinformatics analysis of the Cancer Genome Atlas database and literature retrieval showed that elongation of very long-chain fatty acids protein 6 (ELOVL6) and phospholipase D1 (PLD1) might be important regulatory genes. Western blot analysis revealed that active bufadienolides could downregulate PLD1 protein levels which might promote anti-prostate cancer effect. CONCLUSIONS: All these findings support that bufadienolides might induce lipid metabolic remodeling by regulating long-chain lipids synthesis and phospholipid hydrolysis to achieve an anti-prostate cancer effect, and PLD1 would probably be the key protein.


Assuntos
Bufanolídeos , Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Hidrólise , Multiômica , Metabolômica , Fosfolipídeos/metabolismo , Neoplasias da Próstata/metabolismo
4.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 1-11, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33742447

RESUMO

Recent studies have shown elongase of very-long-chain fatty acids 6 (ELOVL6) is a vital protein for endogenous synthesis of saturated and monounsaturated long-chain fatty acids in some mammals. Nevertheless, its role in lipid synthesis in buffalo mammary gland is still unclear. In this work, the full-length coding sequence (CDS) of ELOVL6 was cloned and identified from buffalo mammary gland. As a result, the CDS of this gene is 795 bp, which encodes a polypeptide of 264 amino acid residues. The buffalo ELOVL6 contains an ELO domain which belongs to the ELO superfamily. Among the 10 tissues of buffalo in peak lactation detected by RT-qPCR, the expression level of ELOVL6 was the highest in the brain, followed by the spleen, and then decreased in the mammary gland, muscle, kidney, heart, liver, rumen, intestine and lung. However, only the expression in the brain and spleen was statistically different from that in other tissues (p < 0.05). Compared with that of the dry-off period, the mRNA abundance of ELOVL6 in the mammary gland was significantly increased in peak lactation. The experiments based on lentivirus transfection in buffalo mammary epithelial cells (BuMECs) displayed that the overexpression of ELOVL6 markedly promoted the expression of INSIG1, INSIG2, SREBP, PPARG, FASN, GPAM, DGAT2 and APGAT6 genes, and the knockdown of ELOVL6 significantly decreased the mRNA abundance of INSIG2, SREBP, FASN, SCD, GPAM, APGAT6 and TIP47 genes. In addition, the increase or decrease of ELOVL6 expression level also caused the corresponding change of total triglyceride content in the BuMECs. The results here suggest that the ELOVL6 can catalyse the synthesis of long-chain fatty acids in the BuMECs, and it can indirectly affect the expression of genes related to milk fat synthesis through its catalytic products to promote the lipid biosynthesis of BuMECs.


Assuntos
Búfalos , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Glândulas Mamárias Animais , Animais , Células Epiteliais , Feminino , Lactação , Leite
5.
J Dairy Sci ; 104(5): 6253-6266, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33685712

RESUMO

The elongation of long-chain fatty acid family member 6 (ELOVL6) gene plays an important role in the synthesis of long-chain saturated and monounsaturated fatty acids. Although some studies have revealed that ELOVL6 is the target of sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) in rodents, the mechanism underlying ELOVL6 regulation during lactation in dairy goats remains unknown. The present study aimed to investigate the transcriptional regulation mechanism of ELOVL6 in goat mammary epithelial cells (GMEC). We used PCR to clone and sequenced a 2,370 bp fragment of the ELOVL6 5' flanking region from goat genomic DNA. Deletion analysis revealed a core promoter region located -105 to -40 bp upstream of the transcriptional start site. Mutant sterol regulatory elements (SRE) 1 and 3 significantly reduced the ELOVL6 promoter activities in GMEC. Both SRE1 and SRE3 binding sites were required for the basal transcriptional activity of ELOVL6. Luciferase reporter assays showed that SREBF1 knockdown decreased ELOVL6 promoter activities in GMEC. Furthermore, SRE1 and SRE3 sites were simultaneously mutated completely abolished the stimulatory effect of SREBF1 and the repressive effect of linoleic acid on ELOVL6 gene promoter activities. Furthermore, chromatin immunoprecipitation assays confirmed that SREBP1 directly bound to SRE sites in the ELOVL6 promoter. In conclusion, these results indicate that SREBP1 regulates ELOVL6 transcription via the SRE elements located in the ELOVL6 promoter in goat mammary gland.


Assuntos
Cabras , Glândulas Mamárias Animais , Animais , Sítios de Ligação , Células Epiteliais/metabolismo , Ácidos Graxos , Feminino , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Regiões Promotoras Genéticas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2
6.
Genomics ; 112(3): 2282-2290, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31901374

RESUMO

This study investigated the effect of ELOVL6 (elongation of very long chain fatty acids protein 6) and its underlying mechanism on lipid metabolism in bovine adipocytes. The ELOVL6 gene was overexpressed in bovine adipocytes by adenoviruses, and RNA sequencing was performed. Overexpression of ELOVL6 showed reduced proportions of C14:0 (Myristic) and C16:0 (palmitate) fatty acids and increased proportions of C18.0 (stearate) and C20:4n6 (arachidonic) fatty acids in adipocytes. In addition, a total of 2170 differentially expressed genes (DEGs) were found, containing 1802 up-regulated and 368 down-regulated genes. KEGG pathway analysis revealed that the down-regulated genes were linked with the regulation of lipolysis and the Wnt signaling pathway. The up-regulated genes were mainly involved in the FoxO signaling pathway; the PI3K-Akt signaling pathway; and the cAMP signaling pathway. In conclusion, our results suggest that ELOVL6 could affect the fatty acid composition in bovine adipocytes. We identified numerous related DEGs and pathways, which may provide a basis for studying the function and molecular mechanism of the ELOVL6 gene in regulating lipid metabolism.


Assuntos
Adipócitos/metabolismo , Bovinos/metabolismo , Elongases de Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Adipócitos/química , Animais , Bovinos/genética , Células Cultivadas , Elongases de Ácidos Graxos/química , Elongases de Ácidos Graxos/genética , Ácidos Graxos/análise , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos/genética , Lipólise/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína
7.
Cell Tissue Res ; 381(1): 115-123, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32157440

RESUMO

Post-translational glycosylation of proteins with O-linked ß-N-acetylglucosamine (O-GlcNAcylation) and changes of galectin expression profiles are essential in many cellular stress responses. We examine this regulation in the liver tissue of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) representing a biological model of hypometabolism and physiological stress resistance. The tissue levels of O-GlcNAcylated proteins as well as galectin-1 and galectin-3 proteins detected by immunodot blot assay were significantly lower by 4.6-5.4-, 2.2-2.3- and 2.5-2.9-fold, respectively, in the non-hibernating summer squirrels compared with those in winter, whether hibernating or aroused. However, there were no differences in the expression of genes encoding enzymes involved in O-GlcNAc cycle (O-GlcNAc transferase and O-GlcNAcase) and such galectins as LGALS1, LGALS2, LGALS3, LGALS4 and LGALS9. Only the expression of LGALS8 gene in the liver tissue was significantly decreased by 37.6 ± 0.1% in hibernating ground squirrels relative to summer animals. Considering that the expression of a proven genetic biomarker ELOVL6 encoding ELOVL fatty acid elongase 6 was readily upregulated in non-hibernating animals by 11.3-32.9-fold, marginal differential changes in the expression of galectin genes cannot be classified as biomarkers of hibernation. Thus, this study provides evidence that hibernation in Ictidomys tridecemlineatus is associated with increasing O-GlcNAcylation of liver proteins and suggests that the contribution of galectins deserves further studies at the protein level.


Assuntos
Acetilglucosamina/metabolismo , Galectinas/metabolismo , Hibernação , Fígado/metabolismo , Sciuridae , Animais , Glicosilação
8.
Anim Genet ; 51(4): 541-556, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32510676

RESUMO

In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30-35 animals per pool) obtaining an average depth per pool of 42×. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production systems.


Assuntos
Variações do Número de Cópias de DNA , DNA/genética , Sus scrofa/genética , Animais , Cruzamento , Feminino , Itália , Masculino , Fenótipo , Especificidade da Espécie , Sequenciamento Completo do Genoma/veterinária
9.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120850

RESUMO

Few studies have been conducted regarding the biological function and regulation role of gga-miR-221-5p in the liver. We compared the conservation of miR-221-5p among species and investigated the expression pattern of gga-miR-221-5p, validating the direct target genes of gga-miR-221-5p by dual luciferase reporter assay, the biological function of gga-miR-221-5p in the liver was studied by gga-miR-221-5p overexpression and inhibition. Furthermore, we explored the regulation of gga-miR-221-5p and its target genes by treatment with estrogen and estrogen antagonists in vivo and in vitro. The results showed that miR-221-5p was highly conserved among species, expressed in all tested tissues and significantly downregulated in peak-laying hen liver compared to pre-laying hen liver. Gga-miR-221-5p could directly target the expression of elongase of very long chain fatty acids 6 (ELOVL6) and squalene epoxidase (SQLE) genes to affect triglyceride and total cholesterol content in the liver. 17ß-estradiol could significantly inhibit the expression of gga-miR-221-5p but promote the expression of ELOVL6 and SQLE genes. In conclusion, the highly conservative gga-miR-221-5p could directly target ELOVL6 and SQLE mRNAs to affect the level of intracellular triglyceride and total cholesterol. Meanwhile, 17ß-estradiol could repress the expression of gga-miR-221-5p but increase the expression of ELOVL6 and SQLE, therefore promoting the synthesis of intracellular triglyceride and cholesterol levels in the liver of egg-laying chicken.


Assuntos
Galinhas/metabolismo , Estrogênios/farmacologia , Elongases de Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Animais , Linhagem Celular , Galinhas/genética , Colesterol/metabolismo , Estradiol/administração & dosagem , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/administração & dosagem , Elongases de Ácidos Graxos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , MicroRNAs/genética , Esqualeno Mono-Oxigenase/genética , Triglicerídeos/metabolismo , Regulação para Cima
10.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325903

RESUMO

Elongation of very long-chain fatty acids protein 6 (Elovl6) has been reported to be associated with clinical treatments of a variety of metabolic diseases. However, there is no systematic and comprehensive study to reveal the regulatory role of Elovl6 in mRNA, protein and phosphorylation levels. We established the first knock-out (KO), elovl6-/-, in zebrafish. Compared with wild type (WT) zebrafish, KO presented significant higher whole-body lipid content and lower content of fasting blood glucose. We utilized RNA-Seq, tandem mass tag (TMT) labeling-based quantitative technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to perform the transcriptomic, proteomic and phosphoproteomic analyses of livers from WT and elovl6-/- zebrafish. There were 734 differentially expressed genes (DEG) and 559 differentially expressed proteins (DEP) between elovl6-/- and WT zebrafish, identified out of quantifiable 47251 transcripts and 5525 proteins. Meanwhile, 680 differentially expressed phosphoproteins (DEPP) with 1054 sites were found out of quantifiable 1230 proteins with 3604 sites. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of the transcriptomic and proteomic data further suggested that the abnormal lipid metabolism and glucose metabolism in KO were mainly related to fatty acid degradation and biosynthesis, glycolysis/gluconeogenesis and PPAR signaling pathway. Based on phosphoproteomic analyses, some kinases critical for lipid metabolism and glucose metabolism, including ribosomal protein S6 kinase (Rps6kb), mitogen-activated protein kinase14 (Mapk14) and V-akt murine thymoma viral oncogene homolog 2-like (Akt2l), were identified. These results allowed us to catch on the regulatory networks of elovl6 on lipid and glucose metabolism in zebrafish. To our knowledge, this is the first multi-omic study of zebrafish lacking elovl6, which provides strong datasets to better understand many lipid/glucose metabolic risks posed to human health.


Assuntos
Glucose/metabolismo , Metabolismo dos Lipídeos , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Peixe-Zebra/metabolismo , Motivos de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência Conservada , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Marcação de Genes , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais , Transcriptoma , Peixe-Zebra/genética
11.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979053

RESUMO

Elongation of very long chain fatty acids protein 6 (Elovl6) is a key enzyme in fatty acid synthesis, which participates in converting palmitate (C16:0) to stearate (C18:0). Although studies of Elovl6 have been carried out in mammals, the nutritional regulation of elovl6 in fish remains poorly understood. In the present study, the cloning and nutritional regulation of elovl6 were determined in large yellow croaker. Sequence and phylogenetic analysis revealed that the full-length cDNA of elovl6 was 1360 bp, including an open reading frame of 810 bp encoding a putative protein of 269 amino acid that possesses the characteristic features of Elovl proteins. The transcript level of elovl6 was significantly increased in the liver of croaker fed the diets with soybean oil (enriched with 18: 2n-6, LA) or linseed oil (enriched with 18: 3n-3, ALA) than that in croaker fed the diet with fish oil (enriched with 20: 5n-3 and 22: 6n-3). Correspondingly, the elovl6 expression in croaker's hepatocytes treated with ALA or LA was remarkably increased compared to the controls. Furthermore, the transcription factors including hepatocyte nuclear factor 1α (HNF1α), CCAAT-enhancer-binding protein ß (CEBPß), retinoid X receptor α (RXRα), and cAMP response element-binding protein 1 (CREB1) greatly enhanced promoter activity of elovl6 in large yellow croaker, and the expression of transcription factors is consistent with the changes of elovl6 expression in response to fatty acids in vivo and in vitro. In conclusion, this study revealed that elovl6 expression in large yellow croaker could be upregulated by dietary ALA or LA via the increased transcriptional expression of transcription factors including hnf1α, cebpß, rxrα, and creb1.


Assuntos
Acetiltransferases/genética , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Perciformes/genética , Ativação Transcricional , Acetiltransferases/química , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sequência de Bases , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Óleo de Semente do Linho/metabolismo , Fígado/fisiologia , Perciformes/fisiologia , Filogenia , Óleo de Soja/metabolismo
12.
Cancer Sci ; 109(4): 1110-1120, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427339

RESUMO

The increased prevalence of hepatocellular carcinoma (HCC) without viral infection, namely, NHCC, is a major public health issue worldwide. NHCC is frequently derived from non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis, which exhibit dysregulated fatty acid (FA) metabolism. This raises the possibility that NHCC evolves intracellular machineries to adapt to dysregulated FA metabolism. We herein aim to identify NHCC-specifically altered FA and key molecules to achieve the adaptation. To analyze FA, imaging mass spectrometry (IMS) was performed on 15 HCC specimens. The composition of saturated FA (SFA) in NHCC was altered from that in typical HCC. The stearate-to-palmitate ratio (SPR) was significantly increased in NHCC. Associated with the SPR increase, the ELOVL6 protein level was upregulated in NHCC. The knockdown of ELOVL6 reduced SPR, and enhanced endoplasmic reticulum stress, inducing apoptosis of Huh7 and HepG2 cells. In conclusion, NHCC appears to adapt to an FA-rich environment by modulating SPR through ELOVL6.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Neoplasias Hepáticas/metabolismo , Palmitatos/metabolismo , Estearatos/metabolismo , Idoso , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/fisiologia
13.
FASEB J ; 31(4): 1449-1460, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007782

RESUMO

Endogenous fatty acid metabolism that results in elongation and desaturation lipid products is thought to play a role in the development of type 2 diabetes mellitus (T2DM). In this study, we evaluated the potential of estimated elongase and desaturase activities for use as predictive markers for T2DM remission after Roux-en-Y gastric bypass (RYGB). The results of a targeted metabolomics approach from 2 independent studies were used to calculate 24 serum FA concentration ratios (product/precursor). Gene expression data from an open public data set was also analyzed. In a longitudinal study of 38 obese diabetic patients with RYGB, we found higher baseline stearic acid/palmitic acid (S/P) ratio. This ratio reflects an elovl6-encoded elongase enzyme activity that has been found to be associated with greater possibility for diabetes remission after RYGB [odds ratio, 2.16 (95% CI 1.10-4.26)], after adjustment for age, gender, body mass index, diabetes duration, glycosylated hemoglobin A1c, and fasting C-peptide. Our results were validated by examination of postsurgical elovl6 gene expression in morbidly obese patients. The association of S/P with the metabolic status of obese individuals was further validated in a cross-sectional cohort of 381 participants. In summary, higher baseline S/P was associated with greater probability of diabetes remission after RYGB and may serve as a diagnostic marker in preoperative patient assessment. - Zhao, L., Ni, Y., Yu, H., Zhang, P., Zhao, A., Bao, Y., Liu, J., Chen, T., Xie, G., Panee, J., Chen, W., Rajani, C., Wei, R., Su, M., Jia, W., Jia, W. Serum stearic acid/palmitic acid ratio as a potential predictor of diabetes remission after Roux-en-Y gastric bypass in obesity.


Assuntos
Diabetes Mellitus/sangue , Derivação Gástrica , Obesidade/cirurgia , Ácido Palmítico/sangue , Ácidos Esteáricos/sangue , Acetiltransferases/genética , Acetiltransferases/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Diabetes Mellitus/epidemiologia , Elongases de Ácidos Graxos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/complicações
14.
Mol Cell Biochem ; 447(1-2): 217-224, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29396722

RESUMO

Bladder cancer is a common disease and a significant cause of death worldwide. There is thus great interest in identifying a diagnostic and prognostic biomarker, as well as gaining an understanding of the molecular basis of bladder cancer. Stearoyl-CoA desaturase 1 gene (SCD1) is highly overexpressed in many human cancers. However, the expression of SCD1 has not yet been investigated in patients with bladder cancer. Here, we document that (a) the SCD1 is highly overexpressed in human bladder cancer; (b) high expression of SCD1 is more frequently observed in the late stage of disease and patients with lymph node metastasis; (c) bladder cancer patients with a higher SCD1 mRNA level have a poorer survival rate than those with normal SCD1 expression. Overall, this is the first report to indicate an association between SCD1 mRNA level and clinical indicators of human bladder cancer. Our study has provided evidence supporting the potential role of SCD1 as a biomarker for human bladder cancer prognosis.


Assuntos
Biomarcadores Tumorais/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Estearoil-CoA Dessaturase/biossíntese , Neoplasias da Bexiga Urinária/enzimologia , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia
15.
Dev Biol ; 416(1): 69-81, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27297886

RESUMO

Pitx2 is a conserved homeodomain transcription factor that has multiple functions during embryonic development. Mutations in human PITX2 cause autosomal dominant Axenfeld-Rieger syndrome (ARS), characterized by congenital eye and tooth malformations. Pitx2(-/-) knockout mouse models recapitulate aspects of ARS, but are embryonic lethal. To date, ARS treatments remain limited to managing individual symptoms due to an incomplete understanding of PITX2 function. In addition to regulating eye and tooth development, Pitx2 is a target of a conserved Nodal (TGFß) signaling pathway that mediates left-right (LR) asymmetry of visceral organs. Based on its highly conserved asymmetric expression domain, the Nodal-Pitx2 axis has long been considered a common denominator of LR development in vertebrate embryos. However, functions of Pitx2 during asymmetric organ morphogenesis are not well understood. To gain new insight into Pitx2 function we used genome editing to create mutations in the zebrafish pitx2 gene. Mutations in the pitx2 homeodomain caused phenotypes reminiscent of ARS, including aberrant development of the cornea and anterior chamber of the eye and reduced or absent teeth. Intriguingly, LR asymmetric looping of the heart and gut was normal in pitx2 mutants. These results suggest conserved roles for Pitx2 in eye and tooth development and indicate Pitx2 is not required for asymmetric looping of zebrafish visceral organs. This work establishes zebrafish pitx2 mutants as a new animal model for investigating mechanisms underlying congenital malformations in ARS and high-throughput drug screening for ARS therapeutics. Additionally, pitx2 mutants present a unique opportunity to identify new genes involved in vertebrate LR patterning. We show Nodal signaling-independent of Pitx2-controls asymmetric expression of the fatty acid elongase elovl6 in zebrafish, pointing to a potential novel pathway during LR organogenesis.


Assuntos
Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/genética , Mutação , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Segmento Anterior do Olho/patologia , Padronização Corporal/genética , Modelos Animais de Doenças , Anormalidades do Olho/patologia , Oftalmopatias Hereditárias , Elongases de Ácidos Graxos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Intestinos/embriologia , Masculino , Transdução de Sinais , Vísceras/embriologia , Peixe-Zebra
16.
Cell Biol Int ; 41(6): 691-696, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28225172

RESUMO

Lipid metabolism in duck is very important for both raisers and people's health. In our previous studies, we have detected that miR-144 is related to duck lipid metabolism and validated one of its target genes, elongation of very long chain fatty acids protein 6 (ELOVL6). In the present study, we isolated, cultured, and identified duck hepatocytes, and transfected with miR-144 mimics/inhibitor to mediate the miR-144 level. The qRT-PCR results showed that the ELOVL6 expression in duck hepatocytes was down/upregulated, respectively. The fat contents and each fatty-acid percent content of the hepatocytes and medium were also determined. When ELOVL6 expression suppressed (miR-144 mimics transfected), the palmitic acid (C16:0) content was significantly increased (P < 0.05); the oleic acid (C18:1, n-9), eicosenoic acid (C20:1, n-9), and eicosatrienoic acid (C20:3) contents were significantly reduced (P < 0.05). The myristic acid (C14:0) and palmitic acid (C16:0) contents were significantly reduced (P < 0.05), and the oleic acid (C18:1, n-9) content was significantly increased (P < 0.05) when ELOVL6 expression upregulated (miR-144 inhibitor transfected). It indicated that miR-144 could regulate some saturated fatty acids elongated to longer unsaturated fatty acids through controlling ELOVL6 expression. Whereas, miR-144/ELOVL6 appeared not associated with fat deposition in duck hepatocytes (P > 0.05). Our findings suggest that miR-144 might regulate the percentages of fatty acids in duck hepatocytes through affecting ELOVL6 expression.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Patos/genética , MicroRNAs/genética , Animais , Elongases de Ácidos Graxos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/genética , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/metabolismo , Cultura Primária de Células/métodos
17.
Br J Nutr ; 118(7): 500-512, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28965514

RESUMO

Nutrition during periconception and early development can modulate metabolic routes to prepare the offspring for adverse conditions through a process known as nutritional programming. In gilthead sea bream, replacement of fish oil (FO) with linseed oil (LO) in broodstock diets improves growth in the 4-month-old offspring challenged with low-FO and low-fishmeal (FM) diets for 1 month. The present study further investigated the effects of broodstock feeding on the same offspring when they were 16 months old and were challenged for a second time with the low-FM and low-FO diet for 2 months. The results showed that replacement of parental moderate-FO feeding with LO, combined with juvenile feeding at 4 months old with low-FM and low-FO diets, significantly (P<0·05) improved offspring growth and feed utilisation of low-FM/FO diets even when they were 16 months old: that is, when they were on the verge of their first reproductive season. Liver fatty acid composition was significantly affected by broodstock or reminder diets as well as by their interaction. Moreover, the reduction of long-chain PUFA and increase in α-linolenic acid and linoleic acid in broodstock diets lead to a significant down-regulation of hepatic lipoprotein lipase (P<0·001) and elongation of very long-chain fatty acids protein 6 (P<0·01). Besides, fatty acid desaturase 2 values were positively correlated to hepatic levels of 18 : 4n-3, 18 : 3n-6, 20 : 5n-3, 22 : 6n-3 and 22 : 5n-6. Thus, this study demonstrated the long-term nutritional programming of gilthead sea bream through broodstock feeding, the effect of feeding a 'reminder' diet during juvenile stages to improve utilisation of low-FM/FO diets and fish growth as well as the regulation of gene expression along the fish's life-cycle.


Assuntos
Ração Animal/análise , Dieta/veterinária , Metabolismo dos Lipídeos , Dourada/crescimento & desenvolvimento , Animais , Regulação para Baixo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Óleos de Peixe/administração & dosagem , Ácido Linoleico/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Ácido alfa-Linolênico/administração & dosagem
18.
Biochem Biophys Res Commun ; 478(3): 1060-6, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524233

RESUMO

Elongation of very long chain fatty acids protein 6 (ELOVL6), a rate-limiting enzyme for the elongation of saturated and monounsaturated fatty acids with 12, 14, and 16 carbons, plays a key role in energy metabolism and insulin sensitivity. Hepatic Elovl6 expression is upregulated in the fasting-refeeding response and in leptin-deficient ob/ob mice. Mouse Elovl6 has been shown to be a direct target of sterol regulatory element binding protein-1 (SREBP-1) in response to insulin. In the present study, we demonstrated that mouse and human Elovl6 expression is under the direct transcriptional control of carbohydrate response element binding protein (ChREBP), a mediator of glucose-induced gene expression. Serial deletion and site-directed mutagenesis studies revealed functional carbohydrate response elements (ChoREs) in the mouse and human Elovl6 promoters and gel shift assays and chromatin immunoprecipitation assays confirmed the binding of ChREBP to the Elovl6-ChoRE sites. In addition, the ectopic co-expression of ChREBP and SREBP-1c in HepG2 cells synergistically stimulated Elovl6 promoter activity and this synergistic activation was abolished by mutating the Elovl6 promoter ChoREs. Taken together, these results suggest that the synergistic action of ChREBP and SREBP-1c is necessary for the maximal induction of Elovl6 expression in the liver.


Assuntos
Acetiltransferases/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Acetiltransferases/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Elongases de Ácidos Graxos , Comportamento Alimentar , Células Hep G2 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética
19.
Biochem Biophys Res Commun ; 480(4): 721-726, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27793673

RESUMO

A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed a RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive 14C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6.


Assuntos
Acetiltransferases/antagonistas & inibidores , Acetiltransferases/química , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Preparações Farmacêuticas/química , Espectrometria de Fluorescência , Avaliação Pré-Clínica de Medicamentos , Elongases de Ácidos Graxos , Preparações Farmacêuticas/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Respir Investig ; 62(4): 526-530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640569

RESUMO

Recent advances in fatty acid analysis have highlighted the links between lipid disruption and disease development. Lipid abnormalities are well-established risk factors for many of the most common chronic illnesses, and their involvement in asthma is also becoming clear. Here, we review research demonstrating the role of abnormal lipid metabolism in asthma, with a focus on saturated fatty acids and sphingolipids. High levels of palmitic acid, the most abundant saturated fatty acid in the human body, have been found in the airways of asthmatic patients with obesity, and were shown to worsen eosinophilic airway inflammation in asthma model mice on a high-fat diet. Aside from being a building block of longer-chain fatty acids, palmitic acid is also the starting point for de novo synthesis of ceramides, a class of sphingolipids. We outline the three main pathways for the synthesis of ceramides, which have been linked to the severity of asthma and act as precursors for the dynamic lipid mediator sphingosine 1-phosphate (S1P). S1P signaling is involved in allergen-induced eosinophilic inflammation, airway hyperresponsiveness, and immune-cell trafficking. A recent study of mice with mutations for the elongation of very long-chain fatty acid family member 6 (Elovl6), an enzyme that elongates fatty acid chains, has highlighted the potential role of palmitic acid composition, and thus lipid balance, in the pathophysiology of allergic airway inflammation. Elovl6 may be a potential therapeutic target in severe asthma.


Assuntos
Asma , Ceramidas , Elongases de Ácidos Graxos , Ácidos Graxos , Metabolismo dos Lipídeos , Ácido Palmítico , Esfingolipídeos , Asma/metabolismo , Asma/etiologia , Humanos , Animais , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Camundongos , Ácidos Graxos/metabolismo , Ácido Palmítico/metabolismo , Elongases de Ácidos Graxos/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Acetiltransferases/metabolismo , Modelos Animais de Doenças , Obesidade/metabolismo , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa