Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Cell ; 182(6): 1606-1622.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888429

RESUMO

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.


Assuntos
Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Corpos de Nissl/metabolismo , RNA Mensageiro/metabolismo , Análise de Célula Única/métodos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Relógios Circadianos/genética , Colo/citologia , Colo/metabolismo , Retículo Endoplasmático Rugoso/genética , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Células Epiteliais/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Íleo/citologia , Íleo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Enteropatias/genética , Enteropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Corpos de Nissl/genética , Corpos de Nissl/ultraestrutura , RNA Mensageiro/genética , RNA-Seq , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Células Estromais/metabolismo
2.
EMBO Rep ; 24(4): e55789, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852936

RESUMO

Efficient isolation of neurons and glia from the human enteric nervous system (ENS) is challenging because of their rare and fragile nature. Here, we describe a staining panel to enrich ENS cells from the human intestine by fluorescence-activated cell sorting (FACS). We find that CD56/CD90/CD24 co-expression labels ENS cells with higher specificity and resolution than previous methods. Surprisingly, neuronal (CD24, TUBB3) and glial (SOX10) selective markers appear co-expressed by all ENS cells. We demonstrate that this contradictory staining pattern is mainly driven by neuronal fragments, either free or attached to glial cells, which are the most abundant cell types. Live neurons can be enriched by the highest CD24 and CD90 levels. By applying our protocol to isolate ENS cells for single-cell RNA sequencing, we show that these cells can be obtained with high quality, enabling interrogation of the human ENS transcriptome. Taken together, we present a selective FACS protocol that allows enrichment and discrimination of human ENS cells, opening up new avenues to study this complex system in health and disease.


Assuntos
Sistema Nervoso Entérico , Humanos , Citometria de Fluxo , Sistema Nervoso Entérico/metabolismo , Intestinos , Neurônios/metabolismo , Neuroglia
3.
Development ; 148(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33376126

RESUMO

The enteric nervous system (ENS), which is derived from neural crest, is essential for gut function, and its deficiency causes severe congenital diseases. Since the capacity for ENS regeneration in mammals is limited, additional complementary models would be useful. Here, we show that the ENS in zebrafish larvae at 10-15 days postfertilization is highly regenerative. After laser ablation, the number of enteric neurons recovered to ∼50% of the control by 10 days post-ablation (dpa). Using transgenic lines in which enteric neural crest-derived cells (ENCDCs) and enteric neurons are labeled with fluorescent proteins, we live imaged the regeneration process and found covering by neurites that extended from the unablated area and entry of ENCDCs into the ablated areas by 1-3 dpa. BrdU assays suggested that ∼80% of the enteric neurons and ∼90% of the Sox10-positive ENCDCs therein at 7 dpa were generated through proliferation. Thus, ENS regeneration involves proliferation, entrance and neurogenesis of ENCDCs. This is the first report regarding the regeneration process of the zebrafish ENS. Our findings provide a basis for further in vivo research at single-cell resolution in this vertebrate model.


Assuntos
Movimento Celular , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/fisiologia , Regeneração Nervosa , Crista Neural/citologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Proliferação de Células , Proteínas de Fluorescência Verde/metabolismo , Intestinos/inervação , Larva , Neuritos/metabolismo , Neurogênese , Fatores de Tempo
4.
Part Fibre Toxicol ; 21(1): 5, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321545

RESUMO

BACKGROUND: Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS: A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION: Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.


Assuntos
Microplásticos , Plásticos , Humanos , Suínos , Animais , Feminino , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/farmacologia , Gelatina/metabolismo , Gelatina/farmacologia , Duodeno/metabolismo , Neurônios
5.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201268

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3ß levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.


Assuntos
Apoptose , Ceramidas , Estresse do Retículo Endoplasmático , Neurônios , Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Animais , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ceramidas/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos
6.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G196-G206, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625480

RESUMO

The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Peixe-Zebra , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal , Microbioma Gastrointestinal/fisiologia
7.
Histochem Cell Biol ; 160(5): 391-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37395792

RESUMO

Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.


Assuntos
Síndrome do Intestino Curto , Criança , Ratos , Humanos , Animais , Síndrome do Intestino Curto/etiologia , Síndrome do Intestino Curto/metabolismo , Nestina , Ratos Sprague-Dawley , Íleo/metabolismo , Íleo/cirurgia , Modelos Animais de Doenças , Plasticidade Neuronal
8.
Cell Commun Signal ; 21(1): 273, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798789

RESUMO

BACKGROUND: Diabetes can lead to extensive damage to the enteric nervous system (ENS), causing gastrointestinal motility disorders. However, there is currently a lack of effective treatments for diabetes-induced ENS damage. Enteric neural precursor cells (ENPCs) closely regulate the structural and functional integrity of the ENS. L-Fucose, is a dietary sugar that has been showed to effectively ameliorate central nervous system injuries, but its potential for ameliorating ENS damage and the involvement of ENPCs in this process remains uncertain. METHODS: Genetically engineered mice were generated for lineage tracing of ENPCs in vivo. Using diabetic mice in vivo and high glucose-treated primary ENPCs in vitro, the effects of L-Fucose on the injured ENS and ENPCs was evaluated by assessing gastrointestinal motility, ENS structure, and the differentiation of ENPCs. The key signaling pathways in regulating neurogenesis and neural precursor cells properties, transforming growth factor-ß (TGF-ß) and its downstream signaling pathways were further examined to clarify the potential mechanism of L-Fucose on the injured ENS and ENPCs. RESULTS: L-Fucose improved gastrointestinal motility in diabetic mice, including increased defecation frequency (p < 0.05), reduced total gastrointestinal transmission time (p < 0.001) and bead expulsion time (p < 0.05), as well as enhanced spontaneous contractility and electric field stimulation-induced contraction response in isolated colonic muscle strips (p < 0.001). The decrease in the number of neurons and glial cells in the ENS of diabetic mice were reversed by L-Fucose treatment. More importantly, L-Fucose treatment significantly promoted the proportion of ENPCs differentiated into neurons and glial cells both in vitro and in vivo, accompanied by inhibiting SMAD2 phosphorylation. CONCLUSIONS: L-Fucose could promote neurogenesis and gliogenesis derived from ENPCs by inhibiting the SMAD2 signaling, thus facilitating ENS regeneration and gastrointestinal motility recovery in type 1 diabetic mice. Video Abstract.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Sistema Nervoso Entérico , Células-Tronco Neurais , Camundongos , Animais , Fucose/farmacologia , Fucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Transdução de Sinais
9.
Annu Rev Physiol ; 81: 235-259, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30379617

RESUMO

At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.


Assuntos
Encéfalo/fisiologia , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal/fisiologia , Animais , Motilidade Gastrointestinal/fisiologia , Humanos , Neurônios/fisiologia
10.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373019

RESUMO

Aspirin (ASA) is a popular nonsteroidal anti-inflammatory drug (NSAID), which exerts its therapeutic properties through the inhibition of cyclooxygenase (COX) isoform 2 (COX-2), while the inhibition of COX-1 by ASA results in the formation of gastrointestinal side effects. Due to the fact that the enteric nervous system (ENS) is involved in the regulation of digestive functions both in physiological and pathological states, the aim of this study was to determine the influence of ASA on the neurochemical profile of enteric neurons in the porcine duodenum. Our research, conducted using the double immunofluorescence technique, proved an increase in the expression of selected enteric neurotransmitters in the duodenum as a result of ASA treatment. The mechanisms of the visualized changes are not entirely clear but are probably related to the enteric adaptation to inflammatory conditions resulting from aspirin supplementation. A detailed understanding of the role of the ENS in the development of drug-induced inflammation will contribute to the establishment of new strategies for the treatment of NSAID-induced lesions.


Assuntos
Aspirina , Sistema Nervoso Entérico , Suínos , Animais , Aspirina/farmacologia , Aspirina/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurônios/metabolismo , Duodeno , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/metabolismo , Suplementos Nutricionais
11.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373470

RESUMO

Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.


Assuntos
Microbioma Gastrointestinal , Sistema Nervoso , Humanos , Animais , Sistema Nervoso Entérico , Sistema Nervoso/metabolismo , Eixo Encéfalo-Intestino , Intestinos/metabolismo , Intestinos/microbiologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/patologia , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/patologia
12.
Gastroenterology ; 160(3): 755-770.e26, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33010250

RESUMO

BACKGROUND & AIMS: The enteric nervous system (ENS) coordinates essential intestinal functions through the concerted action of diverse enteric neurons (ENs). However, integrated molecular knowledge of EN subtypes is lacking. To compare human and mouse ENs, we transcriptionally profiled healthy ENS from adult humans and mice. We aimed to identify transcripts marking discrete neuron subtypes and visualize conserved EN subtypes for humans and mice in multiple bowel regions. METHODS: Human myenteric ganglia and adjacent smooth muscle were isolated by laser-capture microdissection for RNA sequencing. Ganglia-specific transcriptional profiles were identified by computationally subtracting muscle gene signatures. Nuclei from mouse myenteric neurons were isolated and subjected to single-nucleus RNA sequencing, totaling more than 4 billion reads and 25,208 neurons. Neuronal subtypes were defined using mouse single-nucleus RNA sequencing data. Comparative informatics between human and mouse data sets identified shared EN subtype markers, which were visualized in situ using hybridization chain reaction. RESULTS: Several EN subtypes in the duodenum, ileum, and colon are conserved between humans and mice based on orthologous gene expression. However, some EN subtype-specific genes from mice are expressed in completely distinct morphologically defined subtypes in humans. In mice, we identified several neuronal subtypes that stably express gene modules across all intestinal segments, with graded, regional expression of 1 or more marker genes. CONCLUSIONS: Our combined transcriptional profiling of human myenteric ganglia and mouse EN provides a rich foundation for developing novel intestinal therapeutics. There is congruency among some EN subtypes, but we note multiple species differences that should be carefully considered when relating findings from mouse ENS research to human gastrointestinal studies.


Assuntos
Diferenciação Celular/genética , Sistema Nervoso Entérico/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Especificidade da Espécie , Adolescente , Adulto , Animais , Núcleo Celular/metabolismo , Colo/citologia , Colo/inervação , Modelos Animais de Doenças , Duodeno/citologia , Duodeno/inervação , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Motilidade Gastrointestinal , Humanos , Íleo/citologia , Íleo/inervação , Microdissecção e Captura a Laser , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , RNA-Seq , Fatores Sexuais , Análise de Célula Única , Adulto Jovem
13.
Adv Exp Med Biol ; 1383: 213-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587160

RESUMO

RNA-Seq, electrophysiology and optogenetics in mouse models are used to assess function, identify disease related genes and model enteric neural circuits. Lacking a comprehensive quantitative description of the murine colonic enteric nervous system (ENS) makes it difficult to most effectively use mouse data to better understand ENS function or for development of therapeutic approaches for human motility disorders. Our goal was to provide a quantitative description of mouse colon to establish the extent to which mouse colon architecture, connectivity and function is a useful surrogate for human and other mammalian ENS. Using GCaMP imaging coupled with pharmacology and quantitative confocal and 3D image reconstruction, we present quantitative and functional data demonstrating that regional structural changes and variable distribution of neurons define neural circuit dynamics and functional connectivity responsible for colonic motor patterns and regional functional differences. Our results advance utility of multispecies and gut region-specific data.


Assuntos
Sistema Nervoso Entérico , Neurônios , Camundongos , Animais , Humanos , Neurônios/fisiologia , Sistema Nervoso Entérico/fisiologia , Colo , Modelos Animais de Doenças , Mamíferos
14.
Adv Exp Med Biol ; 1383: 307-318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587168

RESUMO

Historically and quantitatively, the enteric site of serotonin (5-HT) storage has primacy over those of any other organ. 5-HT, by the name of "enteramine", was first discovered in the bowel, and the gut produces most of the body's 5-HT. Not only does the bowel secrete 5-HT prodigiously but it also expresses a kaleidoscopic abundance of 5-HT receptors. The larger of two enteric 5-HT stores is mucosal, biosynthetically dependent upon tryptophan hydroxylase1 (TPH1), and located in EC cells. Mechanical stimuli, nutrients, luminal bacteria, and neurotransmitters such as acetylcholine and norepinephrine are all able to stimulate EC cells. Paracrine actions of 5-HT allow the mucosa to signal to neurons to initiate peristaltic and secretory reflexes as well as to inflammatory cells to promote intestinal inflammation. Endocrine effects of 5-HT allow EC cells to influence distant organs, including bone, liver, and endocrine pancreas. The smaller enteric 5-HT store is biosynthetically dependent upon TPH2 and is located within a small subset of myenteric neurons. 5-HT is responsible for slow excitatory neurotransmission manifested primarily in type II/AH neurons. Importantly, neuronal 5-HT also promotes enteric nervous system (ENS) neurogenesis, both pre- and postnatally, through 5-HT2B and especially 5-HT4 receptors. The early birth of serotonergic neurons allows these cells to function as sculptors of the mature ENS. The inactivation of secreted 5-HT depends on transmembrane transport mediated by a serotonin transporter (SERT; SLC6A4). The importance of SERT in control of 5-HT's function means that pharmacological inhibition of SERT, as well as gain- or loss-of-function mutations in SLC6A4, can exert profound effects on development and function of the ENS. Extra-enteric, TPH1-derived 5-HT from yolk sac and placenta promotes neurogenesis before enteric neurons synthesize 5-HT and contribute to ENS patterning. The impressive multi-functional nature of enteric 5-HT has made the precise identification of individual physiological roles difficult and sometimes controversial.


Assuntos
Sistema Nervoso Entérico , Serotonina , Sistema Nervoso Entérico/fisiologia , Motilidade Gastrointestinal/fisiologia , Intestino Delgado , Neurônios , Serotonina/farmacologia , Humanos
15.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563190

RESUMO

The neural-crest-derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS disorders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed understanding of how regeneration is regulated on a cellular and molecular level in animal models with both high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.


Assuntos
Sistema Nervoso Entérico , Peixe-Zebra , Animais , Encéfalo , Mamíferos , Crista Neural , Neurônios
16.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743141

RESUMO

Diverticular disease is a common clinical problem, particularly in industrialized countries. In most cases, colonic diverticula remain asymptomatic throughout life and sometimes are found incidentally during colonic imaging in colorectal cancer screening programs in otherwise healthy subjects. Nonetheless, roughly 25% of patients bearing colonic diverticula develop clinical manifestations. Abdominal symptoms associated with diverticula in the absence of inflammation or complications are termed symptomatic uncomplicated diverticular disease (SUDD). The pathophysiology of diverticular disease as well as the mechanisms involved in the shift from an asymptomatic condition to a symptomatic one is still poorly understood. It is accepted that both genetic factors and environment, as well as intestinal microenvironment alterations, have a role in diverticula development and in the different phenotypic expressions of diverticular disease. In the present review, we will summarize the up-to-date knowledge on the pathophysiology of diverticula and their different clinical setting, including diverticulosis and SUDD.


Assuntos
Doenças Diverticulares , Diverticulose Cólica , Divertículo do Colo , Doenças Diverticulares/etiologia , Diverticulose Cólica/complicações , Diverticulose Cólica/diagnóstico , Humanos , Inflamação
17.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555308

RESUMO

The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10-another important ENS developmental regulator gene-GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood.


Assuntos
Sistema Nervoso Entérico , Peixe-Zebra , Animais , Masculino , Feminino , Humanos , Adulto , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema Nervoso Entérico/metabolismo , Transdução de Sinais , Animais Geneticamente Modificados , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo
18.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769120

RESUMO

Side effects associated with nonsteroidal anti-inflammatory drugs (NSAIDs) treatment are a serious limitation of their use in anti-inflammatory therapy. The negative effects of taking NSAIDs include abdominal pain, indigestion nausea as well as serious complications such as bleeding and perforation. The enteric nervous system is involved in regulation of gastrointestinal functions through the release of neurotransmitters. The present study was designed to determine, for the first time, the changes in pituitary adenylate cyclase-activating polypeptide (PACAP), substance P (SP) and galanin (GAL) expression in porcine jejunum after long-term treatment with aspirin, indomethacin and naproxen. The study was performed on 16 immature pigs. The animals were randomly divided into four experimental groups: control, aspirin, indomethacin and naproxen. Control animals were given empty gelatin capsules, while animals in the test groups received selected NSAIDs for 28 days. Next, animals from each group were euthanized. Frozen sections were prepared from collected jejunum and subjected to double immunofluorescence staining. NSAIDs supplementation caused a significant increase in the population of PACAP-, SP- and GAL-containing enteric neurons in the porcine jejunum. Our results suggest the participation of the selected neurotransmitters in regulatory processes of the gastrointestinal function and may indicate the direct toxic effect of NSAIDs on the ENS neurons.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Sistema Nervoso Entérico/efeitos dos fármacos , Galanina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Substância P/metabolismo , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Dor Crônica/tratamento farmacológico , Sistema Nervoso Entérico/metabolismo , Feminino , Jejuno/inervação , Jejuno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Suínos
19.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948356

RESUMO

Neurodegenerative diseases such as Alzheimer's disease (AD) have long been acknowledged as mere disorders of the central nervous system (CNS). However, in recent years the gut with its autonomous nervous system and the multitude of microbial commensals has come into focus. Changes in gut properties have been described in patients and animal disease models such as altered enzyme secretion or architecture of the enteric nervous system. The underlying cellular mechanisms have so far only been poorly investigated. An important organelle for integrating potentially toxic signals such as the AD characteristic A-beta peptide is the primary cilium. This microtubule-based signaling organelle regulates numerous cellular processes. Even though the role of primary cilia in a variety of developmental and disease processes has recently been recognized, the contribution of defective ciliary signaling to neurodegenerative diseases such as AD, however, has not been investigated in detail so far. The AD mouse model 5xFAD was used to analyze possible changes in gut functionality by organ bath measurement of peristalsis movement. Subsequently, we cultured primary enteric neurons from mutant mice and wild type littermate controls and assessed for cellular pathomechanisms. Neurite mass was quantified within transwell culturing experiments. Using a combination of different markers for the primary cilium, cilia number and length were determined using fluorescence microscopy. 5xFAD mice showed altered gut anatomy, motility, and neurite mass of enteric neurons. Moreover, primary cilia could be demonstrated on the surface of enteric neurons and exhibited an elongated phenotype in 5xFAD mice. In parallel, we observed reduced ß-Catenin expression, a key signaling molecule that regulates Wnt signaling, which is regulated in part via ciliary associated mechanisms. Both results could be recapitulated via in vitro treatments of enteric neurons from wild type mice with A-beta. So far, only a few reports on the probable role of primary cilia in AD can be found. Here, we reveal for the first time an architectural altered phenotype of primary cilia in the enteric nervous system of AD model mice, elicited potentially by neurotoxic A-beta. Potential changes on the sub-organelle level-also in CNS-derived neurons-require further investigations.


Assuntos
Doença de Alzheimer/patologia , Cílios/patologia , Neurônios/patologia , Doença de Alzheimer/genética , Animais , Cílios/genética , Modelos Animais de Doenças , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurônios/metabolismo
20.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G130-G143, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682158

RESUMO

Gastrointestinal (GI) comorbidities are common in individuals with mood and behavioral dysfunction. Similarly, patients with GI problems more commonly suffer from co-morbid psychiatric diagnoses. Although the central and enteric nervous systems (CNS and ENS, respectively) have largely been studied separately, there is emerging interest in factors that may contribute to disease states involving both systems. There is strong evidence to suggest that serotonin may be an important contributor to these brain-gut conditions. Serotonin has long been recognized for its critical functions in CNS development and function. The majority of the body's serotonin, however, is produced in the GI tract, where it plays key roles in ENS development and function. Further understanding of the specific impact that enteric serotonin has on brain-gut disease may lay the foundation for the creation of novel therapeutic targets. This review summarizes the current data focusing on the important roles that serotonin plays in ENS development and motility, with a focus on novel aspects of serotonergic signaling in medical conditions in which CNS and ENS co-morbidities are common, including autism spectrum disorders and depression.


Assuntos
Encéfalo/metabolismo , Sistema Nervoso Entérico/metabolismo , Gastroenteropatias/metabolismo , Motilidade Gastrointestinal , Trato Gastrointestinal/inervação , Transtornos Mentais/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Adolescente , Comportamento do Adolescente , Afeto , Fatores Etários , Animais , Encéfalo/fisiopatologia , Criança , Comportamento Infantil , Sistema Nervoso Entérico/fisiopatologia , Gastroenteropatias/epidemiologia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/psicologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos , Transtornos Mentais/embriologia , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Neurogênese , Receptores de Serotonina/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa