Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Toxicol ; 39(5): 2830-2841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38293837

RESUMO

Methyltransferase like 3 (METTL3) has been proved to be involved in the progression of various cancers. In this study, we explored the role of METTL3 and its underlying mechanism in esophageal cancer progression. The mRNA and protein levels of METTL3 and epiplakin1 (EPPK1) were determined using qRT-PCR and western blot. The proliferative ability was evaluated through 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT), colony formation, and EdU assays. Transwell invasion assay and wound-healing assay were employed for detecting cell invasion and migration, respectively. Cell stemness was evaluated by sphere-formation assay. Xenograft tumor experiments and immunohistochemistry (IHC) were performed to explore the effects of METTL3 knockdown on tumor growth in vivo. The N6-methyladenosine (m6A) modification of EPPK1 was analyzed using MeRIP. RNA-protein immunoprecipitation (RIP) and dual-luciferase reporter assays were used to verify the relationship between EPPK1 and METTL3. METTL3 was upregulated in esophageal cancer tissues and cells, which was related to the poor prognosis of esophageal cancer patients. Knockdown of METTL3 overtly decreased the proliferative, invasive, migrated abilities, and cell stemness of esophageal cancer cells in vitro. Moreover, depletion of METTL3 also observably suppressed the growth of tumor in vivo. EPPK1 was a direct target of METTL3, and METTL3 could mediate the m6A modification of EPPK1. EPPK1 was downregulated in esophageal cancer tissues and cells, and EPPK1 depletion markedly repressed cell proliferation, invasion, migration, and stemness of esophageal cancer cells. The inhibition effects of METTL3 deficiency on these malignant behaviors were harbored by EPPK1 upregulation in esophageal cancer cells. In addition, METTL3 deficiency reduced EPPK1 expression to inactivate the PI3K/AKT pathway. Our results revealed that METTL3 deficiency regulated the m6A modification of EPPK1 to inhibit the PI3K/AKT pathway, thereby restraining the progression of esophageal cancer.


Assuntos
Neoplasias Esofágicas , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Proto-Oncogênicas c-akt , Neoplasias Esofágicas/genética , Adenina , Metiltransferases/genética
2.
Glia ; 71(2): 391-414, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334068

RESUMO

The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.


Assuntos
Células Ependimogliais , Proteoma , Humanos , Camundongos , Animais , Proteoma/metabolismo , Proteômica , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones , Neuroglia/metabolismo
3.
BMC Cancer ; 21(1): 377, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33827480

RESUMO

BACKGROUND: Epiplakin1 (Eppk1) is part of epidermal growth factor (EGF) signal and takes part in reorganization of cytoskeleton and cell proliferation. However, the role of Eppk1 in cervical cancer (CC) remains unknown. METHODS: To express Eppk1 and KLF5 and their correlation, we used RNA-sequence, RT-qPCR, TCGA database and immunofluorescence staining in vitro and in different pathological cervical tissues. In CC cell lines, we tested adenovirus-mediated over expression or knockdown of KLF5 and siRNA-mediated knockdown of Eppk1 and a suiting assessment of cell proliferation and cell signaling by western blot and CCK8 tests. We studied the mechanism by which KLF5 regulates Eppk1 expression by reporter gene test and chromatin immunoprecipitation test. RESULTS: Eppk1 expression promoted in CC tissues and cell lines compared with increased KLF5 expression. The results of immunofluorescence staining further showed the increased co-expression of Eppk1 and KLF5 correlated substantially with tumorigenesis in cervical tissues. Overexpression of KLF5 significantly increased Eppk1 expression at transcription and translation levels. Conversely, the knockdown of KLF5 by siRNA against KLF5 decreased Eppk1 expression. Mechanically, KLF5 activated Eppk1 transcription by direct binding to the Eppk1 promoter. Gain- and loss-of-function experiments reported that KLF5 promoted cell proliferation in Hela partly dependent on Eppk1 upregulation. Besides, KLF5-mediated activation of p38 signaling significantly decreased after Eppk1 knockdown compared with decline of proliferation, suggesting that Eppk1 lies upstream of p38 signaling affecting cell proliferation. Finally, Eppk1 expression is positively correlated with tumor size in clinicopathological features of CC. CONCLUSIONS: Eppk1 may be an effective therapeutic target for affecting p38 signaling pathway and cell proliferation in cervical cancer.


Assuntos
Autoantígenos/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Adulto , Idoso , Autoantígenos/metabolismo , Biópsia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Imunofluorescência , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Ligação Proteica , Neoplasias do Colo do Útero/patologia
4.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199056

RESUMO

Palmoplantar keratodermas (PPKs) are characterized by thickness of stratum corneum and epidermal hyperkeratosis localized in palms and soles. PPKs can be epidermolytic (EPPK) or non epidermolytic (NEPPK). Specific mutations of keratin 16 (K16) and keratin 1 (K1) have been associated to EPPK, and NEPPK. Cases of mosaicism in PPKs due to somatic keratin mutations have also been described in scientific literature. We evaluated a patient presenting hyperkeratosis localized monolaterally in the right palmar area, characterized by linear yellowish hyperkeratotic lesions following the Blaschko lines. No other relatives of the patient showed any dermatological disease. Light and confocal histological analysis confirmed the presence of epidermolityic hyperkeratosis. Genetic analysis performed demonstrates the heterozygous deletion NM_006121.4:r.274_472del for a total of 198 nucleotides, in KRT1 cDNA obtained by a palmar lesional skin biopsy, corresponding to the protein mutation NP_006112.3:p.Gly71_Gly137del. DNA extracted from peripheral blood lymphocytes did not display the presence of the mutation. These results suggest a somatic mutation causing an alteration in K1 N-terminal variable domain (V1). The deleted sequence involves the ISIS subdomain, containing a lysine residue already described as fundamental for epidermal transglutaminases in the crosslinking of IF cytoskeleton. Moreover, a computational analysis of the wild-type and V1-mutated K1/K10 keratin dimers, suggests an unusual interaction between these keratin filaments. The mutation taster in silico analysis also returned a high probability for a deleterious mutation. These data demonstrate once again the importance of the head domain (V1) of K1 in the formation of a functional keratinocyte cytoskeleton. Moreover, this is a further demonstration of the presence of somatic mutations arising in later stages of the embryogenesis, generating a mosaic phenotype.


Assuntos
Queratina-10/química , Queratina-1/química , Queratina-1/genética , Nevo/etiologia , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência , Neoplasias Cutâneas/etiologia , Sequência de Aminoácidos , Sequência de Bases , Biópsia , Análise Mutacional de DNA , Imunofluorescência , Humanos , Imuno-Histoquímica , Queratina-1/metabolismo , Queratina-10/metabolismo , Modelos Moleculares , Nevo/metabolismo , Nevo/patologia , Conformação Proteica , Multimerização Proteica , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade
5.
Thorac Cancer ; 13(8): 1117-1125, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238170

RESUMO

BACKGROUND: Epiplakin1 (EPPK1) has been associated with disease progression and unfavorable prognosis of many cancers, but its functional involvement in esophageal squamous cell carcinoma (ESCC) remains to be uncovered. METHODS: The Quantitative Real-time PCR (qPCR) assay was employed to determine the expression of EPPK1 in ESCC tissues and cells. CCK-8 assay, colony forming assay, wound healing assay, and transwell invasion assay were utilized to evaluate the effects of EPPK1 on cell proliferation, migration, and invasion capacity in ESCC cells using small interfering ribonucleic acids. Flow cytometry was performed to estimate the cell apoptotic rate caused by silencing of EPPK1. The proteins related to epithelial-to-mesenchymal transition (EMT), apoptosis, and activation of the phosphatidylinositol 3-kinase/serine threonine protein kinase 1 (PI3K/AKT) signaling pathway were measured by western blot. RESULTS: The expression of EPPK1 was dramatically increased in ESCC tissues and cells compared to that in relative controls. Additionally, silencing of EPPK1 suppressed ESCC cell growth, colony formation, migration, invasion, and EMT, while promoting ESCC cell apoptosis. Furthermore, EPPK1 induced ESCC cell progression via mediating the PI3K/AKT signaling pathway. CONCLUSION: EPPK1 promotes ESCC progression by modulating the PI3K/AKT signaling pathway and could serve as a potential target for ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Mol Genet Genomic Med ; 7(11): e977, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525823

RESUMO

BACKGROUND: Epidermolytic palmoplantar keratoderma (EPPK) is characterized by hyperkeratotic lesions on palms and soles. The disorder is caused by mutations of keratin 9 (KRT9) or KRT1 gene. METHODS: Epidermolytic palmoplantar keratoderma was diagnosed by physical examination and histopathological analysis in a five-generation Chinese family. Mutation was screened by Sanger sequencing. The palmar expression of multiple cytokeratins were analyzed by tape-stripping and Real-time PCR. Literatures of EPPK with additional symptoms were reviewed. RESULTS: Affected family members showed diffuse palmoplantar keratosis, with knuckle pads, friction-related lesions and a novel additional symptom of palmar constriction. A heterozygous mutation of c.T491C (p.L164P) of KRT9 was found within the helix initiation motif. The hydrophobic effect was decreased and the initiation of coiled-coil conformation was delayed. The KRT16/KRT6 expression were significantly increased in the patients, especially on the right, indicating activation of stress-response and wound-healing cytokeratins. There were also increased KRT9/KRT2, unchanged KRT10/KRT1, and undetectable KRT14/KRT5 expression. The genetic and phenotypic heterogeneity of EPPK with additional symptoms were summarized by literature review. CONCLUSION: The p.L164P mutation of KRT9 caused EPPK with a novel symptom of palmar constriction. The expression of multiple cytokeratins was altered in EPPK patients.


Assuntos
Povo Asiático/genética , Queratina-9/genética , Ceratodermia Palmar e Plantar Epidermolítica/genética , Ceratodermia Palmar e Plantar Epidermolítica/patologia , Mutação , Estudos de Casos e Controles , Feminino , Seguimentos , Heterozigoto , Humanos , Lactente , Masculino , Linhagem
7.
Artigo em Chinês | WPRIM | ID: wpr-843540

RESUMO

Objective • To explore the main mutation types and pathogenicity of the coding region of keratin 9 gene (KRT9) in Chinese Han population, and to provide reference information for the classification and prediction of clinical diagnosis of the disease with epidermolytic palmoplantar keratoderma (EPPK). Methods • 834 subjects were recruited from 278 families that were not affected by EPPK in the Chinese Han population. The mutations in the coding region of KRT9 gene were detected by using the next-generation sequencing (NGS)-based gene panel combined with Sanger sequencing. The pathogenicity analysis of variants was performed by using SIFT and Polyphen-2 prediction software. Results • A total of twelve KRT9 gene mutations were detected in the Chinese Han population based on 834 individuals from 278 families. Among the twelve different mutations, six synonymous mutations and six missense mutations were identified, respectively. The assessment of pathogenicity of KRT9 gene variants was analyzed by bioinformatics tools, such as SIFT and Polyphen-2 prediction, conservative analysis, and database query. Furthermore, these missense mutations were classified as benign or possibly benign variants. Conclusion • In this study, six missense mutations in the coding region of KRT9 gene exon were detected in the Chinese Han population. According to the American Society of Medical Genetics and Genomics (ACMG) variant classification guide, all the six variants were benign or possibly benign. However, previous reports have found that a KRT9 c.1216T>C (p.C406R) mutation was pathogenic in a pedigree with EPPK, which were inconsistent with our findings, and the pathogenicity of this mutation still has to be verified by further functional experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa