Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.498
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38565142

RESUMO

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Glicoproteínas de Membrana , Taurina , Taurina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Fator 4 Ativador da Transcrição/metabolismo , Transdução de Sinais , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Fator de Transcrição STAT3/metabolismo
2.
Cell ; 186(19): 4172-4188.e18, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37633267

RESUMO

Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.


Assuntos
Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Retículo Endoplasmático/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Quinases , Ubiquitina-Proteína Ligases , Drosophila melanogaster , Animais
3.
Cell ; 185(22): 4082-4098.e22, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36198318

RESUMO

The mechanism that initiates autophagosome formation on the ER in multicellular organisms is elusive. Here, we showed that autophagy stimuli trigger Ca2+ transients on the outer surface of the ER membrane, whose amplitude, frequency, and duration are controlled by the metazoan-specific ER transmembrane autophagy protein EPG-4/EI24. Persistent Ca2+ transients/oscillations on the cytosolic ER surface in EI24-depleted cells cause accumulation of FIP200 autophagosome initiation complexes on the ER. This defect is suppressed by attenuating ER Ca2+ transients. Multi-modal SIM analysis revealed that Ca2+ transients on the ER trigger the formation of dynamic and fusion-prone liquid-like FIP200 puncta. Starvation-induced Ca2+ transients on lysosomes also induce FIP200 puncta that further move to the ER. Multiple FIP200 puncta on the ER, whose association depends on the ER proteins VAPA/B and ATL2/3, assemble into autophagosome formation sites. Thus, Ca2+ transients are crucial for triggering phase separation of FIP200 to specify autophagosome initiation sites in metazoans.


Assuntos
Autofagossomos , Cálcio , Animais , Autofagossomos/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Ciclo Celular/metabolismo
4.
Annu Rev Biochem ; 90: 605-630, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33503381

RESUMO

The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Animais , Apolipoproteínas/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Colágeno/metabolismo , Evolução Molecular , Humanos , Mucinas/metabolismo , Família Multigênica , Transporte Proteico , Proteínas/química
5.
Annu Rev Biochem ; 90: 659-679, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153214

RESUMO

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


Assuntos
Colesterol/biossíntese , Degradação Associada com o Retículo Endoplasmático/fisiologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Animais , Dimetilaliltranstransferase/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Camundongos , Fosfatos de Poli-Isoprenil/metabolismo , Processamento de Proteína Pós-Traducional , Esteróis/metabolismo , Terpenos/metabolismo , Terpenos/farmacologia , Ubiquitinação
6.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823651

RESUMO

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Assuntos
Colágeno/química , Fibrose/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Pró-Colágeno/química , Pró-Colágeno/metabolismo , Animais , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Fibrose/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Hidroxilação , Chaperonas Moleculares/metabolismo , Prolina/química , Prolina/metabolismo , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
7.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559986

RESUMO

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/química , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Camundongos Endogâmicos NOD , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Oncogenes , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Tamoxifeno/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo
8.
Cell ; 180(6): 1160-1177.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32160526

RESUMO

Selective autophagy of organelles is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few autophagosomal receptors and remodelers. By using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence human ER-phagy factors. Two pathways were unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which is opposite of general autophagy and is independent of AMPK. Second, ER-localized UFMylation is required for ER-phagy to repress the unfolded protein response via IRE1α. The UFL1 ligase is brought to the ER surface by DDRGK1 to UFMylate RPN1 and RPL26 and preferentially targets ER sheets for degradation, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Autofagia/genética , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Estudo de Associação Genômica Ampla/métodos , Células HCT116 , Células HEK293 , Células HeLa , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
9.
Cell ; 181(3): 637-652.e15, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32272059

RESUMO

Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.


Assuntos
Sistemas de Translocação de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Sinais Direcionadores de Proteínas , Sistemas de Translocação de Proteínas/fisiologia , Transporte Proteico/fisiologia , Proteínas/metabolismo , Via Secretória , Proteínas de Transporte Vesicular/fisiologia
10.
Cell ; 176(6): 1461-1476.e23, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849374

RESUMO

Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Linhagem Celular , Proteína Coatomer/metabolismo , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células HeLa , Humanos , Masculino , Dobramento de Proteína , Transporte Proteico , Proteostase/fisiologia , Transdução de Sinais
11.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31353221

RESUMO

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Assuntos
Neoplasias da Mama/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antagonistas do Receptor de Estrogênio/uso terapêutico , Feminino , Fulvestranto/uso terapêutico , Células HEK293 , Xenoenxertos , Humanos , Indazóis/farmacologia , Ligantes , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Polimorfismo de Nucleotídeo Único , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
12.
Cell ; 178(6): 1344-1361.e11, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474371

RESUMO

Necrosis of infected macrophages constitutes a critical pathogenetic event in tuberculosis by releasing mycobacteria into the growth-permissive extracellular environment. In zebrafish infected with Mycobacterium marinum or Mycobacterium tuberculosis, excess tumor necrosis factor triggers programmed necrosis of infected macrophages through the production of mitochondrial reactive oxygen species (ROS) and the participation of cyclophilin D, a component of the mitochondrial permeability transition pore. Here, we show that this necrosis pathway is not mitochondrion-intrinsic but results from an inter-organellar circuit initiating and culminating in the mitochondrion. Mitochondrial ROS induce production of lysosomal ceramide that ultimately activates the cytosolic protein BAX. BAX promotes calcium flow from the endoplasmic reticulum into the mitochondrion through ryanodine receptors, and the resultant mitochondrial calcium overload triggers cyclophilin-D-mediated necrosis. We identify ryanodine receptors and plasma membrane L-type calcium channels as druggable targets to intercept mitochondrial calcium overload and necrosis of mycobacterium-infected zebrafish and human macrophages.


Assuntos
Macrófagos/microbiologia , Macrófagos/patologia , Mitocôndrias/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Tuberculose/imunologia , Tuberculose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Retículo Endoplasmático/microbiologia , Humanos , Lisossomos/microbiologia , Potencial da Membrana Mitocondrial , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium marinum , Mycobacterium tuberculosis , Necrose , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Peixe-Zebra
13.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348885

RESUMO

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
14.
Annu Rev Biochem ; 87: 783-807, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28841344

RESUMO

Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Proteólise , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
15.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703775

RESUMO

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Assuntos
Glioblastoma , Glucose , Histonas , Macrófagos , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Histonas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glucose/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-10/metabolismo , Glicólise , Microglia/metabolismo , Microglia/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tolerância Imunológica
16.
Annu Rev Cell Dev Biol ; 35: 453-475, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283377

RESUMO

Macroautophagy is an intracellular degradation system that delivers diverse cytoplasmic materials to lysosomes via autophagosomes. Recent advances have enabled identification of several selective autophagy substrates and receptors, greatly expanding our understanding of the cellular functions of autophagy. In this review, we describe the diverse cellular functions of macroautophagy, including its essential contribution to metabolic adaptation and cellular homeostasis. We also discuss emerging findings on the mechanisms and functions of various types of selective autophagy.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagossomos/enzimologia , Autofagossomos/microbiologia , Autofagia/fisiologia , Retículo Endoplasmático/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Lisossomos/patologia , Mitocôndrias/patologia , Nutrientes/deficiência , Nutrientes/metabolismo , Peroxissomos/metabolismo , Peroxissomos/fisiologia
17.
Cell ; 171(4): 809-823.e13, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056340

RESUMO

Constitutive cell-autonomous immunity in metazoans predates interferon-inducible immunity and comprises primordial innate defense. Phagocytes mobilize interferon-inducible responses upon engagement of well-characterized signaling pathways by pathogen-associated molecular patterns (PAMPs). The signals controlling deployment of constitutive cell-autonomous responses during infection have remained elusive. Vita-PAMPs denote microbial viability, signaling the danger of cellular exploitation by intracellular pathogens. We show that cyclic-di-adenosine monophosphate in live Gram-positive bacteria is a vita-PAMP, engaging the innate sensor stimulator of interferon genes (STING) to mediate endoplasmic reticulum (ER) stress. Subsequent inactivation of the mechanistic target of rapamycin mobilizes autophagy, which sequesters stressed ER membranes, resolves ER stress, and curtails phagocyte death. This vita-PAMP-induced ER-phagy additionally orchestrates an interferon response by localizing ER-resident STING to autophagosomes. Our findings identify stress-mediated ER-phagy as a cell-autonomous response mobilized by STING-dependent sensing of a specific vita-PAMP and elucidate how innate receptors engage multilayered homeostatic mechanisms to promote immunity and survival after infection.


Assuntos
Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Membrana/metabolismo , Fagócitos/imunologia , Animais , Autofagia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Feminino , Masculino , Camundongos , Moléculas com Motivos Associados a Patógenos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
18.
Cell ; 171(2): 346-357.e12, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28919078

RESUMO

Newly synthesized proteins engage molecular chaperones that assist folding. Their progress is monitored by quality control systems that target folding errors for degradation. Paradoxically, chaperones that promote folding also direct unfolded polypeptides for degradation. Hence, a mechanism was previously hypothesized that prevents the degradation of actively folding polypeptides. In this study, we show that a conserved endoplasmic reticulum (ER) membrane protein complex, consisting of Slp1 and Emp65 proteins, performs this function in the ER lumen. The complex binds unfolded proteins and protects them from degradation during folding. In its absence, approximately 20%-30% of newly synthesized proteins that could otherwise fold are degraded. Although the Slp1-Emp65 complex hosts a broad range of clients, it is specific for soluble proteins. Taken together, these studies demonstrate the vulnerability of newly translated, actively folding polypeptides and the discovery of a new proteostasis functional class we term "guardian" that protects them from degradation.


Assuntos
Retículo Endoplasmático/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Degradação Associada com o Retículo Endoplasmático , Glicosilação , Camundongos , Chaperonas Moleculares/metabolismo , Proteólise , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
19.
Cell ; 168(4): 692-706, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28187289

RESUMO

Malignant cells utilize diverse strategies that enable them to thrive under adverse conditions while simultaneously inhibiting the development of anti-tumor immune responses. Hostile microenvironmental conditions within tumor masses, such as nutrient deprivation, oxygen limitation, high metabolic demand, and oxidative stress, disturb the protein-folding capacity of the endoplasmic reticulum (ER), thereby provoking a cellular state of "ER stress." Sustained activation of ER stress sensors endows malignant cells with greater tumorigenic, metastatic, and drug-resistant capacity. Additionally, recent studies have uncovered that ER stress responses further impede the development of protective anti-cancer immunity by manipulating the function of myeloid cells in the tumor microenvironment. Here, we discuss the tumorigenic and immunoregulatory effects of ER stress in cancer, and we explore the concept of targeting ER stress responses to enhance the efficacy of standard chemotherapies and evolving cancer immunotherapies in the clinic.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/imunologia , Neoplasias/patologia , Animais , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Evasão Tumoral , Microambiente Tumoral , Resposta a Proteínas não Dobradas
20.
Mol Cell ; 84(1): 156-169, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141606

RESUMO

Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.


Assuntos
Proteínas , Ubiquitinas , Humanos , Animais , Camundongos , Proteínas/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fenômenos Fisiológicos Celulares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa