Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 92(7): e0021724, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38884474

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that survives and grows in macrophages. A mechanism used by Mtb to achieve intracellular survival is to secrete effector molecules that arrest the normal process of phagosome maturation. Through phagosome maturation arrest (PMA), Mtb remains in an early phagosome and avoids delivery to degradative phagolysosomes. One PMA effector of Mtb is the secreted SapM phosphatase. Because the host target of SapM, phosphatidylinositol-3-phosphate (PI3P), is located on the cytosolic face of the phagosome, SapM needs to not only be released by the mycobacteria but also travel out of the phagosome to carry out its function. To date, the only mechanism known for Mtb molecules to leave the phagosome is phagosome permeabilization by the ESX-1 secretion system. To understand this step of SapM function in PMA, we generated identical in-frame sapM mutants in both the attenuated Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine strain, which lacks the ESX-1 system, and Mtb. Characterization of these mutants demonstrated that SapM is required for PMA in BCG and Mtb. Further, by establishing a role for SapM in PMA in BCG, and subsequently in a Mtb mutant lacking the ESX-1 system, we demonstrated that the role of SapM does not require ESX-1. We further determined that ESX-2 or ESX-4 is also not required for SapM to function in PMA. These results indicate that SapM is a secreted effector of PMA in both BCG and Mtb, and that it can function independent of the known mechanism for Mtb molecules to leave the phagosome.


Assuntos
Proteínas de Bactérias , Mycobacterium bovis , Mycobacterium tuberculosis , Fagossomos , Fagossomos/microbiologia , Fagossomos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Animais , Camundongos
2.
Yi Chuan ; 45(12): 1100-1113, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764274

RESUMO

Mycobacterium infection can affect the host's immune function by secreting extracellular effector proteins. ESX (or type VII) system plays an important role in the secretion of effector proteins. ESX system is the protein export system in mycobacteria and many actinomycetes. However, how ESX system secretes and underlying mechanism of action remain unclear. In this review, we introduce the components, function, classification of ESX system and the process of substrates transfer to the peripheral space via this system, and discuss the roles of ESX system in antibiotics resistance, persistence, host-phage interaction, new drug targets. We hope to provide insights into the discovery of new drugs and vaccine antigens for tuberculosis.


Assuntos
Proteínas de Bactérias , Mycobacterium , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Tuberculose/microbiologia
3.
J Bacteriol ; 199(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461452

RESUMO

Mycobacterial 6-kDa early secreted antigenic target (ESAT-6) system (ESX) exporters transport proteins across the cytoplasmic membrane. Many proteins transported by ESX systems are then translocated across the mycobacterial cell envelope and secreted from the cell. Although the mechanism underlying protein transport across the mycolate outer membrane remains elusive, the ESX systems are closely connected with and localize to the cell envelope. Links between ESX-associated proteins, cell wall synthesis, and the maintenance of cell envelope integrity have been reported. Genes encoding the ESX systems and those required for biosynthesis of the mycobacterial envelope are coregulated. Here, we review the interplay between ESX systems and the mycobacterial cell envelope.


Assuntos
Parede Celular/metabolismo , Mycobacterium/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Mycobacterium/genética , Transporte Proteico , Sistemas de Secreção Tipo VII/genética
4.
IUBMB Life ; 67(6): 414-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26104967

RESUMO

The Mycobacterium tuberculosis genome was sequenced more than 15 years ago. It revealed a lot of interesting information, one of which was that 10% of the total coding capacity of the M. tuberculosis genome is dedicated to the PE/PPE family. There is a gradual expansion of these proteins from nonpathogenic to pathogenic mycobacteria, and there is increasing evidence that PE/PPE proteins play important roles in mycobacterial pathogenesis. In this review, we discuss PE/PPE proteins, their close functional association with the ESX clusters, their immunomodulatory functions, and their important roles in mycobacterial virulence. In addition, we have attempted to review and compile information available in the literature detailing the expression patterns of PE/PPE family members in different mycobacterial species and also during infection. Our attempt has been to provide a succinct overview of this interesting family.


Assuntos
Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/patogenicidade , Vacinas contra a Tuberculose , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Desenho de Fármacos , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Família Multigênica , Mycobacterium tuberculosis/genética , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/farmacologia
5.
mBio ; 14(4): e0057323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37350613

RESUMO

Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.


Assuntos
Mycobacterium kansasii , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium kansasii/genética , Mutagênese , Mycobacterium tuberculosis/genética , Tuberculose/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Biomedicines ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359269

RESUMO

Vaccination is an excellent approach to stimulating the host immune response and reducing human morbidity and mortality against microbial infections, such as tuberculosis (TB). Bacillus Calmette-Guerin (BCG) is the most widely administered vaccine in the world and the only vaccine approved by the World Health Organization (WHO) to protect against TB. Although BCG confers "protective" immunity in children against the progression of Mycobacterium tuberculosis (Mtb) infection into active TB, this vaccine is ineffective in protecting adults with active TB manifestations, such as multiple-, extensive-, and total-drug-resistant (MDR/XDR/TDR) cases and the co-existence of TB with immune-compromising health conditions, such as HIV infection or diabetes. Moreover, BCG can cause disease in individuals with HIV infection or other immune compromises. Due to these limitations of BCG, novel strategies are urgently needed to improve global TB control measures. Since live vaccines elicit a broader immune response and do not require an adjuvant, developing recombinant BCG (rBCG) vaccine candidates have received significant attention as a potential replacement for the currently approved BCG vaccine for TB prevention. In this report, we aim to present the latest findings and outstanding questions that we consider worth investigating regarding novel mycobacteria-based live attenuated TB vaccine candidates. We also specifically discuss the important features of two key animal models, mice and rabbits, that are relevant to TB vaccine testing. Our review emphasizes that the development of vaccines that block the reactivation of latent Mtb infection (LTBI) into active TB would have a significant impact in reducing the spread and transmission of Mtb. The results and ideas discussed here are only based on reports from the last five years to keep the focus on recent developments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa