Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Br J Nutr ; 118(9): 641-650, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29185933

RESUMO

Suboptimal vitamin B2 status is encountered globally. Riboflavin deficiency depresses growth and results in a fatty liver. The underlying mechanisms remain to be established and an overview of molecular alterations is lacking. We investigated hepatic proteome changes induced by riboflavin deficiency to explain its effects on growth and hepatic lipid metabolism. In all, 360 1-d-old Pekin ducks were divided into three groups of 120 birds each, with twelve replicates and ten birds per replicate. For 21 d, the ducks were fed ad libitum a control diet (CAL), a riboflavin-deficient diet (RD) or were pair-fed with the control diet to the mean daily intake of the RD group (CPF). When comparing RD with CAL and CPF, growth depression, liver enlargement, liver lipid accumulation and enhanced liver SFA (C6 : 0, C12 : 0, C16 : 0, C18 : 0) were observed. In RD, thirty-two proteins were enhanced and thirty-one diminished (>1·5-fold) compared with CAL and CPF. Selected proteins were confirmed by Western blotting. The diminished proteins are mainly involved in fatty acid ß-oxidation and the mitochondrial electron transport chain (ETC), whereas the enhanced proteins are mainly involved in TAG and cholesterol biosynthesis. RD causes liver lipid accumulation and growth depression probably by impairing fatty acid ß-oxidation and ETC. These findings contribute to our understanding of the mechanisms of liver lipid metabolic disorders due to RD.


Assuntos
Patos/sangue , Fígado/metabolismo , Proteoma/genética , Deficiência de Riboflavina/sangue , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia/metabolismo , Dieta , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo dos Lipídeos , Masculino , Mitocôndrias Hepáticas/metabolismo , Proteoma/metabolismo , Riboflavina/sangue , Albumina Sérica/metabolismo
2.
Saudi J Biol Sci ; 30(1): 103495, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36439959

RESUMO

Background: There is need to investigate whether phytochemicals along with surgical detorsion could serve as better managements options in TT patients rather than surgical detorsion (SD) alone. Methods: The descriptive cross-sectional part of this study is questionnaire-based addressing sociodemographic characteristics of participants and their experience in management of TT. In the experimental part, male rats (n = 32) were grouped into: sham, Ischemia-reperfusion injury (IRI), dichloromethane (DCM) and ethanol fraction (100 mg/kg) of CO. Evaluation of tissue GPx, total thiol, SOD, MDA and H2O2 was done. Serum estimations of nitrite, TNF-α and IL-6, MPO, sperm motility, count and viability was also carried out. Tissue expression of bax and caspase 3 was assessed. Results: 68.9 % respondents agreed that SD alone is non-effective in the management of TT while 83.6 % reported a need to augment surgery with medications. Oxidative stress markers like H2O2, MDA and nitrite increased by IRI were decreased in post-treatment groups, along with a significant increase in the tissue level of GSH, GST, SOD, GPx, and total thiol. Inflammatory mediators were elevated in IRI while post-treatment rats showed significant decrease. IRI decreased sperm count significantly this was reversed by post-treatment. Bax and caspase 3 was increased in IRI rats and post-treatment with CO fractions reduced them. Conclusions: Quantitative cross-sectional study has revealed through experience of clinicians that surgical detorsion alone is not effective in managing TT. Augmented treatment with CO leaf fractions suppressed testicular IRI through inhibition of pro-apoptotic proteins expression, oxidative stress and inflammation.

3.
J Clin Exp Hepatol ; 13(2): 335-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950485

RESUMO

The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.

4.
Ophthalmol Sci ; 2(1): 100107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36246185

RESUMO

Purpose: To identify racial differences of oxidative damage and stress and mitochondrial function in human trabecular meshwork (TM). Design: Experimental study. Participants: One hundred seventy-three eyes of 173 patients undergoing intraocular surgery provided aqueous humor (AH) for analysis. Trabecular meshwork tissues from eye bank donors were used as healthy controls for primary cell culture. Methods: Enzyme-linked immunosorbent assay methods were used to measure 8-hydroxy-2-deoxyguanosine (8-OHdG), an oxidative damage marker, in AH comparing Black and White Americans. Human TM primary cultured cells from Black and White donors were used for adenosine triphosphate (ATP) measurement under high and low oxygen culture conditions. Complex I activity was measured in mitochondrial fractions isolated from cultured TM cells. Mitochondrial quantification was performed by translocase of outer mitochondrial membrane 20 (TOMM20) Western blot. Intracellular reactive oxygen species (ROS) production was measured in live TM cells. Main Outcome Measures: Oxidative damage in AH, ATP production, complex I activity, mitochondrial quantification, and intracellular ROS in cultured TM cells stratified by racial background. Results: Aqueous humor samples (75 Black, 98 White) displayed significantly higher 8-OHdG levels (P = 0.024) in Black compared with White patients with severe stage glaucoma. Using cultured healthy donor TM cells, ATP production was higher in Black than White TM cells (P = 0.002) in low oxygen culture conditions. Complex I activity was not statistically different in Black compared with White TM cells, but TOMM20 expression was higher in Black versus White cells (P = 0.001). In response to hydrogen peroxide challenge, ROS production was significantly higher in Black compared to White TM cells (P = 0.004). Conclusions: Significantly higher 8-OHdG levels in AH of Black compared with White patients with severe glaucoma indicated that oxidative damage may be a risk factor in glaucoma pathogenesis or the result of distinct pathologic features in the Black population. To identify potential origins or causes of this damage, our data showed that healthy Black cultured TM cells have higher ATP and ROS levels, with increased quantity of mitochondria, compared with White TM cells. These findings indicate that mitochondrial alterations and increased oxidative stress may influence racial disparities of glaucoma.

5.
JHEP Rep ; 4(8): 100510, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845295

RESUMO

Background & Aims: In cirrhosis, astrocytic swelling is believed to be the principal mechanism of ammonia neurotoxicity leading to hepatic encephalopathy (HE). The role of neuronal dysfunction in HE is not clear. We aimed to explore the impact of hyperammonaemia on mitochondrial function in primary co-cultures of neurons and astrocytes and in acute brain slices of cirrhotic rats using live cell imaging. Methods: To primary cocultures of astrocytes and neurons, low concentrations (1 and 5 µM) of NH4Cl were applied. In rats with bile duct ligation (BDL)-induced cirrhosis, a model known to induce hyperammonaemia and minimal HE, acute brain slices were studied. One group of BDL rats was treated twice daily with the ammonia scavenger ornithine phenylacetate (OP; 0.3 g/kg). Fluorescence measurements of changes in mitochondrial membrane potential (Δψm), cytosolic and mitochondrial reactive oxygen species (ROS) production, lipid peroxidation (LP) rates, and cell viability were performed using confocal microscopy. Results: Neuronal cultures treated with NH4Cl exhibited mitochondrial dysfunction, ROS overproduction, and reduced cell viability (27.8 ± 2.3% and 41.5 ± 3.7%, respectively) compared with untreated cultures (15.7 ± 1.0%, both p <0.0001). BDL led to increased cerebral LP (p = 0.0003) and cytosolic ROS generation (p <0.0001), which was restored by OP (both p <0.0001). Mitochondrial function was severely compromised in BDL, resulting in hyperpolarisation of Δψm with consequent overconsumption of adenosine triphosphate and augmentation of mitochondrial ROS production. Administration of OP restored Δψm. In BDL animals, neuronal loss was observed in hippocampal areas, which was partially prevented by OP. Conclusions: Our results elucidate that low-grade hyperammonaemia in cirrhosis can severely impact on brain mitochondrial function. Profound neuronal injury was observed in hyperammonaemic conditions, which was partially reversible by OP. This points towards a novel mechanism of HE development. Lay summary: The impact of hyperammonaemia, a common finding in patients with liver cirrhosis, on brain mitochondrial function was investigated in this study. The results show that ammonia in concentrations commonly seen in patients induces severe mitochondrial dysfunction, overproduction of damaging oxygen molecules, and profound injury and death of neurons in rat brain cells. These findings point towards a novel mechanism of ammonia-induced brain injury in liver failure and potential novel therapeutic targets.

6.
J Orthop Translat ; 35: 113-121, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36312592

RESUMO

Background: Tourniquet-induced ischemia and reperfusion (I/R) has been related to postoperative muscle atrophy through mechanisms involving protein synthesis/breakdown, cellular metabolism, mitochondrial dysfunction, and apoptosis. Ischemic preconditioning (IPC) could protect skeletal muscle against I/R injury. This study aims to determine the underlying mechanisms of IPC and its effect on muscle strength after total knee arthroplasty (TKA). Methods: Twenty-four TKA patients were randomized to receive either sham IPC or IPC (3 cycles of 5-min ischemia followed by 5-min reperfusion). Vastus medialis muscle biopsies were collected at 30 â€‹min after tourniquet (TQ) inflation and the onset of reperfusion. Western blot analysis was performed in muscle protein for 4-HNE, SOD2, TNF-ɑ, IL-6, p-Drp1ser616, Drp1, Mfn1, Mfn2, Opa1, PGC-1ɑ, ETC complex I-V, cytochrome c, cleaved caspase-3, and caspase-3. Clinical outcomes including isokinetic muscle strength and quality of life were evaluated pre- and postoperatively. Results: IPC significantly increased Mfn2 (2.0 â€‹± â€‹0.2 vs 1.2 â€‹± â€‹0.1, p â€‹= â€‹0.001) and Opa1 (2.9 â€‹± â€‹0.3 vs 1.9 â€‹± â€‹0.2, p â€‹= â€‹0.005) proteins expression at the onset of reperfusion, compared to the ischemic phase. There were no differences in 4-HNE, SOD2, TNF-ɑ, IL-6, p-Drp1ser616/Drp1, Mfn1, PGC-1ɑ, ETC complex I-V, cytochrome c, and cleaved caspase-3/caspase-3 expression between the ischemic and reperfusion periods, or between the groups. Clinically, postoperative peak torque for knee extension significantly reduced in the sham IPC group (-16.6 [-29.5, -3.6] N.m, p â€‹= â€‹0.020), while that in the IPC group was preserved (-4.7 [-25.3, 16.0] N.m, p â€‹= â€‹0.617). Conclusion: In TKA with TQ application, IPC preserved postoperative quadriceps strength and prevented TQ-induced I/R injury partly by enhancing mitochondrial fusion proteins in the skeletal muscle. The translational potential of this article: Mitochondrial fusion is a potential underlying mechanism of IPC in preventing skeletal muscle I/R injury. IPC applied before TQ-induced I/R preserved postoperative quadriceps muscle strength after TKA.

7.
Mol Genet Metab Rep ; 30: 100847, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242578

RESUMO

As a result of a founder effect, a Leigh syndrome variant called Leigh syndrome, French-Canadian type (LSFC, MIM / 220,111) is more frequent in Saguenay-Lac-Saint-Jean (SLSJ), a geographically isolated region on northeastern Quebec, Canada. LSFC is a rare autosomal recessive mitochondrial neurodegenerative disorder due to damage in mitochondrial energy production. LSFC is caused by pathogenic variants in the nuclear gene leucine-rich pentatricopeptide repeat-containing (LRPPRC). Despite progress understanding the molecular mode of action of LRPPRC gene, there is no treatment for this disease. The present study aims to identify the biological pathways altered in the LSFC disorder through microarray-based transcriptomic profile analysis of twelve LSFC cell lines compared to twelve healthy ones, followed by gene ontology (GO) and pathway analyses. A set of 84 significantly differentially expressed genes were obtained (p ≥ 0.05; Fold change (Flc) ≥ 1.5). 45 genes were more expressed (53.57%) in LSFC cell lines compared to controls and 39 (46.43%) had lower expression levels. Gene ontology analysis highlighted altered expression of genes involved in the mitochondrial respiratory chain and energy production, glucose and lipids metabolism, oncogenesis, inflammation and immune response, cell growth and apoptosis, transcription, and signal transduction. Considering the metabolic nature of LSFC disease, genes included in the mitochondrial respiratory chain and energy production cluster stood out as the most important ones to be involved in LSFC mitochondrial disorder. In addition, the protein-protein interaction network indicated a strong interaction between the genes included in this cluster. The mitochondrial gene NDUFA4L2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2), with higher expression in LSFC cells, represents a target for functional studies to explain the role of this gene in LSFC disease. This work provides, for the first time, the LSFC gene expression profile in fibroblasts isolated from affected individuals. This represents a valuable resource to understand the pathogenic basis and consequences of LRPPRC dysfunction.

8.
Acta Pharm Sin B ; 12(2): 483-495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256930

RESUMO

Alzheimer's disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.

9.
Acta Pharm Sin B ; 12(2): 511-531, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256932

RESUMO

Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.

10.
JHEP Rep ; 3(3): 100283, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095796

RESUMO

BACKGROUND & AIMS: In patients with severe alcoholic hepatitis (SAH), little is known about the profile of peripheral blood mononuclear cells (PBMCs) at baseline and during corticosteroid therapy, among those who can be treated successfully with steroids (steroid-responders [R] and those who cannot (steroid-non-responders [NR]); 2 groups with different outcomes. METHODS: We performed RNA-seq analysis in PBMCs from 32 patients with definite SAH, at baseline and after 7 days of corticosteroids. The data were sorted into R and NR (n = 16, each group) using the Lille model and 346 blood transcription modules (BTMs) were identified. BTMs are predefined modules of highly co-expressed PBMC genes, which can determine specific immune cell types and cellular functions. The activity of each BTM was taken as the mean value of its member genes. RESULTS: At baseline, 345 BTMs had higher activity (i.e. were upregulated) in NR relative to R. The 100 most upregulated BTMs in NR, included several modules related to lymphoid lineage (T, B, and natural killer [NK] cells), modules for cell division and mitochondrial respiratory electron transport chain (ETC, relating to energy production), but only a few modules of myeloid cells. Correlation studies of BTM activities found features of significantly greater activation/proliferation and differentiation for T and B cells in NR relative to R. After 7 days of corticosteroids, NR had no significant changes in BTM activities relative to baseline, whereas R had downregulation of BTMs related to innate and adaptive immunity. CONCLUSIONS: At baseline and during corticosteroid therapy, increased activity in the PBMCs of gene modules related to activation/proliferation and differentiation of T and B cells, NK cells, and mitochondrial ETC, is a hallmark of SAH patients who are steroid-non-responders. LAY SUMMARY: Patients with severe alcoholic hepatitis receive steroid therapy as the main line of treatment; however, this treatment is ineffective in some patients. This only becomes apparent after 7 days of steroid therapy. We have developed an approach where it can be estimated if a patient is going to respond or not to steroid therapy using the gene expression information of blood cells. This method will allow clinicians to assess the response of patients to steroids earlier, and will help them in adopting alternate strategies if the treatment is found to be ineffective in a particular patient.

11.
Biochem Biophys Rep ; 26: 100928, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33665377

RESUMO

VWA8 (Von Willebrand A Domain Containing Protein 8) is a AAA+ ATPase that is localized to the mitochondrial matrix and is widely expressed in highly energetic tissues. Originally found to be higher in abundance in livers of mice fed a high fat diet, deletion of the VWA8 gene in differentiated mouse AML12 hepatocytes unexpectedly produced a phenotype of higher mitochondrial and nonmitochondrial oxidative metabolism, higher ROS (reactive oxygen species) production mainly from NADPH oxidases, and increased HNF4a expression. The purposes of this study were first, to determine whether higher mitochondrial oxidative capacity in VWA8 null hepatocytes is the product of higher capacity in all aspects of the electron transport chain and oxidative phosphorylation, and second, the density of cristae in mitochondria and mitochondrial content was measured to determine if higher mitochondrial oxidative capacity is accompanied by greater cristae area and mitochondrial abundance. Electron transport chain complexes I, II, III, and IV activities all were higher in hepatocytes in which the VWA8 gene had been deleted using CRISPR/Cas9. A comparison of abundance of proteins in electron transport chain complexes I, III and ATP synthase previously determined using an unbiased proteomics approach in hepatocytes in which VWA8 had been deleted showed agreement with the activity assays. Mitochondrial cristae, the site where electron transport chain complexes are located, were quantified using electron microscopy and stereology. Cristae density, per mitochondrial area, was almost two-fold higher in the VWA8 null cells (P < 0.01), and mitochondrial area was two-fold higher in the VWA8 null cells (P < 0.05). The results of this study allow us to conclude that despite sustained, higher ROS production in VWA8 null cells, a global mitochondrial compensatory response was maintained, resulting in overall higher mitochondrial oxidative capacity.

12.
JACC Basic Transl Sci ; 6(8): 650-672, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466752

RESUMO

In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34909667

RESUMO

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a 'drug'. The transformation from lead molecule to 'drug' is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline.

14.
JHEP Rep ; 3(3): 100276, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997750

RESUMO

BACKGROUND & AIMS: Mitochondria are the major organelles for the formation of reactive oxygen species (ROS) in the cell, and mitochondrial dysfunction has been described as a key factor in the pathogenesis of cholestatic liver disease. The methylation-controlled J-protein (MCJ) is a mitochondrial protein that interacts with and represses the function of complex I of the electron transport chain. The relevance of MCJ in the pathology of cholestasis has not yet been explored. METHODS: We studied the relationship between MCJ and cholestasis-induced liver injury in liver biopsies from patients with chronic cholestatic liver diseases, and in livers and primary hepatocytes obtained from WT and MCJ-KO mice. Bile duct ligation (BDL) was used as an animal model of cholestasis, and primary hepatocytes were treated with toxic doses of bile acids. We evaluated the effect of MCJ silencing for the treatment of cholestasis-induced liver injury. RESULTS: Elevated levels of MCJ were detected in the liver tissue of patients with chronic cholestatic liver disease when compared with normal liver tissue. Likewise, in mouse models, the hepatic levels of MCJ were increased. After BDL, MCJ-KO animals showed significantly decreased inflammation and apoptosis. In an in vitro model of bile-acid induced toxicity, we observed that the loss of MCJ protected mouse primary hepatocytes from bile acid-induced mitochondrial ROS overproduction and ATP depletion, enabling higher cell viability. Finally, the in vivo inhibition of the MCJ expression, following BDL, showed reduced liver injury and a mitigation of the main cholestatic characteristics. CONCLUSIONS: We demonstrated that MCJ is involved in the progression of cholestatic liver injury, and our results identified MCJ as a potential therapeutic target to mitigate the liver injury caused by cholestasis. LAY SUMMARY: In this study, we examine the effect of mitochondrial respiratory chain inhibition by MCJ on bile acid-induced liver toxicity. The loss of MCJ protects hepatocytes against apoptosis, mitochondrial ROS overproduction, and ATP depletion as a result of bile acid toxicity. Our results identify MCJ as a potential therapeutic target to mitigate liver injury in cholestatic liver diseases.

15.
JACC Basic Transl Sci ; 5(1): 88-106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32043022

RESUMO

The burden of heart failure (HF) in terms of health care expenditures, hospitalizations, and mortality is substantial and growing. The failing heart has been described as "energy-deprived" and mitochondrial dysfunction is a driving force associated with this energy supply-demand imbalance. Existing HF therapies provide symptomatic and longevity benefit by reducing cardiac workload through heart rate reduction and reduction of preload and afterload but do not address the underlying causes of abnormal myocardial energetic nor directly target mitochondrial abnormalities. Numerous studies in animal models of HF as well as myocardial tissue from explanted failed human hearts have shown that the failing heart manifests abnormalities of mitochondrial structure, dynamics, and function that lead to a marked increase in the formation of damaging reactive oxygen species and a marked reduction in on demand adenosine triphosphate synthesis. Correcting mitochondrial dysfunction therefore offers considerable potential as a new therapeutic approach to improve overall cardiac function, quality of life, and survival for patients with HF.

16.
Toxicol Rep ; 6: 1164-1175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31763180

RESUMO

Autism is the category used within the newest edition of the diagnostic and statistical manual of neurodevelopmental disorders. Autism is a spectrum of disorder where a variety of behavioural patterns observed in autistic patients, such as stereotypes and repetitive behavior, hyperexcitability, depression-like symptoms, and memory and cognitive dysfunctions. Neuropathological hallmarks that associated with autism are mitochondrial dysfunction, oxidative stress, neuroinflammation, Neuro-excitation, abnormal synapse formation, overexpression of glial cells in specific brain regions like cerebellum, cerebral cortex, amygdala, and hippocampus. ICV injection of propionic acid (PPA) (4 µl/0.26 M) mimics autistic-like behavioral and biochemical alterations in rats. Literature findings reveal that there is a link between autism neuronal mitochondrial coenzyme-Q10 (CoQ10) and ETC-complexes dysfunctions are the keys pathogenic events for autism. Therefore, in the current study, we explore the neuroprotective interventions of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with standard drugs Aripiprazole (ARP) 5 mg/kg, Citalopram (CTP) 10 mg/kg, Memantine (MEM) 5 mg/kg and Donepezil (DNP) 3 mg/kg to overcome behavioral and biochemical alterations in PPA induced experimental model of Autism. Chronic treatment with SNL 60 mg/kg in combination with standard drug shows a marked improvement in locomotion, muscle coordination, long-term memory and the decrease in depressive behavior. While, chronic treatment of SNL alone and in combination with standard drug aripiprazole, citalopram, donepezil, and memantine shows the Neuroprotective potential by enhancing the cognitive deficits, biochemical alterations along with reducing the level of inflammatory mediators and oxidative stress.

17.
Mol Genet Metab Rep ; 19: 100465, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963028

RESUMO

BACKGROUND: Multiple sclerosis is a disorder related to demyelination of axons. Iron is an essential cofactor in myelin synthesis. Previously, we described two children (males of mixed ancestry) with relapsing-remitting multiple sclerosis (RRMS) where long-term remission was achieved by regular iron supplementation. A genetic defect in iron metabolism was postulated, suggesting that more advanced genetic studies could shed new light on disease pathophysiology related to iron. METHODS: Whole exome sequencing (WES) was performed to identify causal pathways. Blood tests were performed over a 10 year period to monitor the long-term effect of a supplementation regimen. Clinical wellbeing was assessed quarterly by a pediatric neurologist and regular feedback was obtained from the schoolteachers. RESULTS: WES revealed gene variants involved in iron absorption and transport, in the transmembrane protease, serine 6 (TMPRSS6) and transferrin (TF) genes; multiple genetic variants in CUBN, which encodes cubilin (a receptor involved in the absorption of vitamin B12 as well as the reabsorption of transferrin-bound iron and vitamin D in the kidneys); SLC25A37 (involved in iron transport into mitochondria) and CD163 (a scavenger receptor involved in hemorrhage resolution). Variants were also found in COQ3, involved with synthesis of Coenzyme Q10 in mitochondria. Neither of the children had the HLA-DRB1*1501 allele associated with increased genetic risk for MS, suggesting that the genetic contribution of iron-related genetic variants may be instrumental in childhood MS. In both children the RRMS has remained stable without activity over the last 10 years since initiation of nutritional supplementation and maintenance of normal iron levels, confirming the role of iron deficiency in disease pathogenesis in these patients. CONCLUSION: Our findings highlight the potential value of WES to identify heritable risk factors that could affect the reabsorption of transferrin-bound iron in the kidneys causing sustained iron loss, together with inhibition of vitamin B12 absorption and vitamin D reabsorption (CUBN) and iron transport into mitochondria (SLC25A37) as the sole site of heme synthesis. This supports a model for RRMS in children with an apparent iron-deficient biochemical subtype of MS, with oligodendrocyte cell death and impaired myelination possibly caused by deficits of energy- and antioxidant capacity in mitochondria.

18.
Transl Res ; 202: 52-68, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165038

RESUMO

Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.


Assuntos
Imunidade Inata , Mitocôndrias/metabolismo , Transdução de Sinais , Alarminas/metabolismo , Animais , DNA Mitocondrial/genética , Humanos , Modelos Biológicos
19.
Biochem Biophys Rep ; 10: 32-38, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955734

RESUMO

Since brown adipose tissue (BAT) is involved in thermogenesis using fatty acids as a fuel, BAT activation is a potential strategy for treating obesity and diabetes. However, whether BAT fatty acid combusting capacity is preserved in these conditions has remained unclear. We therefore evaluated expression levels of fatty acid oxidation-associated enzymes and uncoupling protein 1 (Ucp1) in BAT by western blot using a diet-induced obesity C57BL/6J mouse model. In C57BL/6J mice fed a high-fat diet (HFD) over 2-4 weeks, carnitine palmitoyltransferase 2 (Cpt2), acyl-CoA thioesterase (Acot) 2, Acot11 and Ucp1 levels were significantly increased compared with baseline and control low-fat diet (LFD)-fed mice. Similar results were obtained in other mouse strains, including ddY, ICR and KK-Ay, but the magnitudes of the increase in Ucp1 level were much smaller than in C57BL/6J mice, with decreased Acot11 levels after HFD-feeding. In C57BL/6J mice, increased levels of these mitochondrial proteins declined to near baseline levels after a longer-term HFD-feeding (20 weeks), concurrent with the accumulation of unilocular, large lipid droplets in brown adipocytes. Extramitochondrial Acot11 and acyl-CoA oxidase remained elevated. Treatment of mice with Wy-14,643 also increased these proteins, but was less effective than 4 week-HFD, suggesting that mechanisms other than peroxisome proliferator-activated receptor α were also involved in the upregulation. These results suggest that BAT enhances its fatty acid combusting capacity in response to fat overload, however profound obesity deprives BAT of the responsiveness to fat, possibly via mitochondrial alteration.

20.
Mol Metab ; 6(8): 797-808, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752044

RESUMO

OBJECTIVE: Brown adipocytes (BAs) are endowed with a high metabolic capacity for energy expenditure due to their high mitochondria content. While mitochondrial pH is dynamically regulated in response to stimulation and, in return, affects various metabolic processes, how mitochondrial pH is regulated during adrenergic stimulation-induced thermogenesis is unknown. We aimed to reveal the spatial and temporal dynamics of mitochondrial pH in stimulated BAs and the mechanisms behind the dynamic pH changes. METHODS: A mitochondrial targeted pH-sensitive protein, mito-pHluorin, was constructed and transfected to BAs. Transfected BAs were stimulated by an adrenergic agonist, isoproterenol. The pH changes in mitochondria were characterized by dual-color imaging with indicators that monitor mitochondrial membrane potential and heat production. The mechanisms of pH changes were studied by examining the involvement of electron transport chain (ETC) activity and Ca2+ profiles in mitochondria and the intracellular Ca2+ store, the endoplasmic reticulum (ER). RESULTS: A triphasic mitochondrial pH change in BAs upon adrenergic stimulation was revealed. In comparison to a thermosensitive dye, we reveal that phases 1 and 2 of the pH increase precede thermogenesis, while phase 3, characterized by a pH decrease, occurs during thermogenesis. The mechanism of pH increase is partially related to ETC. In addition, the pH increase occurs concurrently with an increase in mitochondrial Ca2+. This Ca2+ increase is contributed to by an influx from the ER, and it is further involved in mitochondrial pH regulation. CONCLUSIONS: We demonstrate that an increase in mitochondrial pH is implicated as an early event in adrenergically stimulated BAs. We further suggest that this pH increase may play a role in the potentiation of thermogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Sinalização do Cálcio , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Concentração de Íons de Hidrogênio , Camundongos , Termogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa