Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Small ; : e2401184, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884188

RESUMO

An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.

2.
J Synchrotron Radiat ; 31(Pt 2): 322-327, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306299

RESUMO

X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.

3.
J Synchrotron Radiat ; 31(Pt 3): 447-455, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530834

RESUMO

Hard X-ray absorption spectroscopy is a valuable in situ probe for non-destructive diagnostics of metal sites. The low-energy interval of a spectrum (XANES) contains information about the metal oxidation state, ligand type, symmetry and distances in the first coordination shell but shows almost no dependency on the bridged metal-metal bond length. The higher-energy interval (EXAFS), on the contrary, is more sensitive to the coordination numbers and can decouple the contribution from distances in different coordination shells. Supervised machine-learning methods can combine information from different intervals of a spectrum; however, computational approaches for the near-edge region of the spectrum and higher energies are different. This work aims to keep all benefits of XANES and extend its sensitivity towards the interatomic distances in the first and second coordination shells. Using a binuclear bridged copper complex as a case study and cross-validation analysis as a quantitative tool it is shown that the first 170 eV above the edge are already sufficient to balance the contributions of Cu-O/N scattering and Cu-Cu scattering. As a more general outcome this work highlights the trivial but often overlooked importance of using `longer' energy intervals of XANES for structural refinement and machine-learning predictions. The first 200 eV above the absorption edge still do not require parametrization of Debye-Waller damping and can be calculated within full multiple scattering or finite difference approximations with only moderately increased computational costs.

4.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588505

RESUMO

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Assuntos
Argila , Metais Terras Raras , Minerais , Adsorção , Metais Terras Raras/química , Argila/química , Minerais/química , Concentração de Íons de Hidrogênio , Silicatos de Alumínio/química
5.
Environ Sci Technol ; 58(26): 11470-11481, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864425

RESUMO

Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.


Assuntos
Oxirredução , Oxigênio Singlete , Oxigênio Singlete/química , Antimônio/química , Ferro/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxidos/química , Oxigênio/química
6.
Environ Res ; 252(Pt 1): 118793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552828

RESUMO

Glomalin-related soil protein (GRSP) is a significant component in the sequestration of heavy metal in soils, but its mechanisms for metal adsorption are poorly known. This study combined spectroscopic data with molecular docking simulations to reveal metal adsorption onto GRSP's surface functional groups at the molecular level. The EXAFS combined with FTIR and XPS analyses indicated that the adsorption of Cd(II), Sr(II), and Ni(II) by GRSP occurred mainly through the coordination of -OH and -COOH groups with the metal. The -COOH and -OH groups bound to the metal as electron donors and the electron density of the oxygen atom decreased, suggesting that electrostatic attraction might be involved in the adsorption process. Two-dimensional correlation spectroscopy revealed that preferential adsorption occurred on GRSP for the metal in sequential order of -COOH groups followed by -OH groups. The presence of the Ni-C shell in the Ni EXAFS spectrum suggested that Ni formed organometallic complexes with the GRSP surface. However, Sr-C and Cd-C were absent in the second shell of the Sr and Cd spectra, which was attributed to the adsorption of Sr and Cd ions with large hydration ion radius by GRSP to form outer-sphere complexes. Through molecular docking simulations, negatively charged residues such as ASP151 and ASP472 in GRSP were found to provide electrostatic attraction and ligand combination for the metal adsorption, which was consistent with the spectroscopic analyses. Overall, these findings provided new insights into the interaction mechanisms between GRSP and metals, which will help deepen our understanding of the ecological functions of GRSP in metal sequestration.


Assuntos
Simulação de Acoplamento Molecular , Níquel , Níquel/química , Adsorção , Cádmio/química , Sedimentos Geológicos/química , Proteínas Fúngicas/química , Metais Pesados/química , Áreas Alagadas , Poluentes do Solo/química , Glicoproteínas
7.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792184

RESUMO

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.

8.
Chimia (Aarau) ; 78(5): 304-312, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38822773

RESUMO

Understanding structure-performance relationships are essential for the rational design of new functional materials or in the further optimization of (catalytic) processes. Due to the high penetration depth of the radiation used, synchrotron-based hard X-ray techniques (with energy > 4.5 keV) allow the study of materials under realistic conditions (in situ and operando) and thus play an important role in uncovering structure-performance relationships. X-ray absorption and emission spectroscopies (XAS and XES) give insight into the electronic structure (oxidation state, spin state) and local geometric structure (type and number of nearest neighbor atoms, bond distances, disorder) up to ~5 Å around the element of interest. In this mini review, we will give an overview of the in situ and operando capabilities of the SuperXAS beamline, a facility for hard X-ray spectroscopy, through recent examples from studies of heterogeneous catalysts, electrochemical systems, and photoinduced processes. The possibilities for time-resolved experiments in the time range from ns to seconds and longer are illustrated. The extension of X-ray spectroscopy at the new Debye beamline combined with operando X-ray scattering and diffraction and further developments of time-resolved XES at SuperXAS will open new possibilities after the Swiss Light Source upgrade mid 2025.

9.
Small ; 19(1): e2203331, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403214

RESUMO

Nanocrystalline ZnO sponges doped with 5 mol% EuO1.5 are obtained by heating metal-salt complex based precursor pastes at 200-900 °C for 3 min. X-ray diffraction, transmission electron microscopy, and extended X-ray absorption fine structure (EXAFS) show that phase separation into ZnO:Eu and c-Eu2 O3 takes place upon heating at 700 °C or higher. The unit cell of the clean oxide made at 600 °C shows only ≈0.4% volume increase versus undoped ZnO, and EXAFS shows a ZnO local structure that is little affected by the Eu-doping and an average Eu3+ ion coordination number of ≈5.2. Comparisons of 23 density functional theory-generated structures having differently sized Eu-oxide clusters embedded in ZnO identify three structures with four or eight Eu atoms as the most energetically favorable. These clusters exhibit the smallest volume increase compared to undoped ZnO and Eu coordination numbers of 5.2-5.5, all in excellent agreement with experimental data. ZnO defect states are crucial for efficient Eu3+ excitation, while c-Eu2 O3 phase separation results in loss of the characteristic Eu3+ photoluminescence. The formation of molecule-like Eu-oxide clusters, entrapped in ZnO, proposed here, may help in understanding the nature of the unexpected high doping levels of lanthanide ions in ZnO that occur virtually without significant change in ZnO unit cell dimensions.


Assuntos
Elementos da Série dos Lantanídeos , Óxido de Zinco , Óxido de Zinco/química , Európio/química , Difração de Raios X
10.
J Biol Inorg Chem ; 28(8): 805-811, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981582

RESUMO

In the search for improved and safer gadolinium-based magnetic resonance imaging (MRI) contrast agents, macrocyclic cyclodextrins (CDs) attract great interest. Our group previously synthesized a cyclodextrin-based ligand with 1,2,3-triazolmethyl residues conjugated to ß-CD, called ß-CD(A), which efficiently chelates Gd(III) ions. To probe the local structure around the Gd(III) ion in the 1:1 Gd(III): ß-CD(A) complex in aqueous solution (pH 5.5), we used extended X-ray absorption fine structure (EXAFS) spectroscopy. Least-squares curve fitting of the Gd L3-edge EXAFS spectrum revealed 5 Gd-O (4 COO- and 1 H2O) and 4 Gd-N (from two imino and two 1,2,3-triazole groups) bonds around the Gd(III) ion with average distances 2.36 and 2.56 ± 0.02 Å, respectively. A similar EXAFS spectrum was obtained from an aqueous solution of the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)], also 9-coordinated in its first shell. Careful analysis revealed that the mean Gd-N distance is shorter in the Gd(III): ß-CD(A) (1:1) complex, indicating stronger Gd-N bonding and stronger Gd(III) complex formation than with the DOTA4- ligand. This is consistent with the lower free Gd3+ concentration found previously for the Gd(III): ß-CD(A) (1:1) complex than for the [Gd(DOTA)(H2O)]- complex, and shows its potential as an MRI probe. EXAFS spectroscopy revealed a similar Gd(III) 9-coordination although slightly stronger for a modified ß-cyclodextrin: Gd(III) 1:1 complex, [Gd(LH4)]7-, in aqueous solution than for the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)].


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Gadolínio/química , Meios de Contraste , Ligantes , Imageamento por Ressonância Magnética/métodos
11.
Chemistry ; 29(61): e202301740, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37522641

RESUMO

The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading. This study describes the development of a highly active and reusable palladium-based catalyst on alumina (Pd8 /Al2 O3 ) for Suzuki cross-coupling reactions. An octanuclear tiara-like palladium complex was selected as active phase precursor to give isolated Pd-clusters of ca. 1 nm in size on Al2 O3 . The catalyst was thoroughly characterised by several complementary techniques to assess its structural and chemical nature. The high specific activity of the catalyst has allowed to carry out the cross-coupling reaction in 30 min using only 0.12 mol % of Pd loading under very mild and green reaction conditions. Screening of various substrates and selectivity tests, combined with recycling and benchmarking experiments, have been used to highlight the great potentialities of this new Pd8 /Al2 O3 catalyst.

12.
Environ Sci Technol ; 57(12): 4841-4851, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917499

RESUMO

Soil zinc contamination is a major threat to water quality and sensitive ecosystems. While Zn itself is not redox-active in soils, transitions in soil redox conditions may promote mobilization of Zn from common Zn hosts, including Mn(IV)/Fe(III)-(hydr)oxides and sulfide precipitates, leading to elevated concentrations of dissolved Zn in surface and groundwater and thus a potential increase in Zn transport and uptake. Here, we examined the impacts of hydrologic fluctuations and coupled redox transitions on Zn partitioning in contaminated riparian soil in a mountain watershed. We found that oxygenation of the soil profile during low water conditions caused a spike in porewater Zn concentrations, driven by oxidative dissolution of amorphous ZnS and weak partitioning of Zn to Fe(III)-(hydr)oxides, hydroxy-interlayer vermiculite, and vermiculite. In contrast to Pb, released Zn did not immediately adsorb to Fe(III)-(hydr)oxides or particulate organic matter due to less-favorable sorption of Zn than that of Pb and, further, decreased Zn sorption at slightly acidic pH. As aridification intensifies and groundwater levels decline throughout the western United States, contaminated floodplain soils in mountain watersheds may be frequently oxygenated, leading to increased mobilization of dissolved Zn, which will amplify the threat Zn poses to water quality and ecosystem health.


Assuntos
Ecossistema , Poluentes do Solo , Estações do Ano , Compostos Férricos , Chumbo , Zinco/análise , Solo , Óxidos
13.
Environ Sci Technol ; 57(25): 9353-9361, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37295412

RESUMO

A lack of knowledge about antimony (Sb) isotope fractionation mechanisms in key geochemical processes has limited its environmental applications as a tracer. Naturally widespread iron (Fe) (oxyhydr)oxides play a key role in Sb migration due to strong adsorption, but the behavior and mechanisms of Sb isotopic fractionation on Fe (oxyhydr)oxides are still unclear. Here, we investigate the adsorption mechanisms of Sb on ferrihydrite (Fh), goethite (Goe), and hematite (Hem) using extended X-ray absorption fine structure (EXAFS) and show that inner-sphere complexation of Sb species with Fe (oxyhydr)oxides occurs independent of pH and surface coverage. Lighter Sb isotopes are preferentially enriched on Fe (oxyhydr)oxides due to isotopic equilibrium fractionation, with neither surface coverage nor pH influencing the degree of fractionation (Δ123Sbaqueous-adsorbed). Limited Fe atoms are present in the second shell of Hem and Goe, resulting in weaker surface complexes and leading to greater Sb isotopic fractionation than with Fh (Δ123Sbaqueous-adsorbed of 0.49 ± 0.004, 1.12 ± 0.006, and 1.14 ± 0.05‰ for Fh, Hem, and Goe, respectively). These results improve the understanding of the mechanism of Sb adsorption by Fe (oxyhydr)oxides and further clarify the Sb isotope fractionation mechanism, providing an essential basis for future application of Sb isotopes in source and process tracing.


Assuntos
Antimônio , Óxidos , Óxidos/química , Adsorção , Antimônio/química , Raios X , Compostos Férricos , Isótopos , Água
14.
Environ Sci Technol ; 57(12): 4813-4820, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36929871

RESUMO

Jarosite, a common mineral in acidic sulfur-rich environments, can strongly sorb both As(V) and Sb(V). However, little is known regarding the mechanisms that control simultaneous co-sorption of As(V) and Sb(V) to jarosite. We investigated the mechanisms controlling As(V) and Sb(V) sorption to jarosite at pH 3 (in dual and single metalloid treatments). Jarosite was found to sorb Sb(V) to a greater extent than As(V) in both single and dual metalloid treatments. Relative to single metalloid treatments, the dual presence of both As(V) and Sb(V) decreased the sorption of both metalloids by almost 50%. Antimony K-edge EXAFS spectroscopy revealed that surface precipitation of an Sb(V) oxide species was the predominant sorption mechanism for Sb(V). In contrast, As K-edge EXAFS spectroscopy showed that As(V) sorption occurred via bidentate corner-sharing complexes on the jarosite surface when Sb(V) was absent or present at low loadings or by formation of similar complexes on the Sb(V) oxide surface precipitate when Sb(V) was present at high loadings. These results point to a novel mechanism by which Sb(V) impacts the co-sorption of As(V). Overall, these findings highlight a strong contrast in the sorption mechanisms of Sb(V) versus As(V) to jarosite under acidic environmental conditions.


Assuntos
Arsênio , Arsênio/química , Antimônio/química , Raios X , Adsorção , Óxidos , Espectroscopia por Absorção de Raios X
15.
Environ Sci Technol ; 57(33): 12489-12500, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37551789

RESUMO

In situ Fe(III) coprecipitation from Fe2+ oxidation is a widespread phenomenon in natural environments and water treatment processes. Studies have shown the superiority of in situ Fe(III) (formed by in situ oxidation of a Fe(II) coagulant) over ex situ Fe(III) (using a Fe(III) coagulant directly) in coagulation, but the reasons remain unclear due to the uncertain nature of amorphous structures. Here, we utilized an in situ Fe(III) coagulation process, oxidizing the Fe(II) coagulant by potassium permanganate (KMnO4), to treat phosphate-containing surface water and analyzed differences between in situ and ex situ Fe(III) coagulation in phosphate removal, dissolved organic matter (DOM) removal, and floc growth. Compared to ex situ Fe(III), flocs formed by the natural oxidizing Fe2+ coagulant exhibited more effective phosphate removal. Furthermore, in situ Fe(III) formed through accelerated oxidation by KMnO4 demonstrated improved flocculation behavior and enhanced removal of specific types of DOM by forming a more stable structure while still maintaining effective phosphate removal. Fe K-edge extended X-ray absorption fine structure spectra (EXAFS) of the flocs explained their differences. A short-range ordered strengite-like structure (corner-linked PO4 tetrahedra to FeO6 octahedra) was the key to more effective phosphorus removal of in situ Fe(III) than ex situ Fe(III) and was well preserved when KMnO4 accelerated in situ Fe(III) formation. Conversely, KMnO4 significantly inhibited the edge and corner coordination between FeO6 octahedra and altered the floc-chain-forming behavior by accelerating hydrolysis, resulting in a more dispersed monomeric structure than ex situ Fe(III). This research provides an explanation for the superiority of in situ Fe(III) in phosphorus removal and highlights the importance of atomic-level structural differences between ex situ and in situ Fe(III) coprecipitates in water treatment.


Assuntos
Compostos Férricos , Purificação da Água , Compostos Férricos/química , Matéria Orgânica Dissolvida , Fosfatos , Oxirredução , Compostos Ferrosos/química , Fósforo , Purificação da Água/métodos
16.
J Environ Manage ; 341: 118092, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167698

RESUMO

The sustainability of Mediterranean croplands is threatened by climate warming and rainfall reduction. The use of biochar as an amendment represents a tool to store organic carbon (C) in soil. The vulnerability of soil organic C (SOC) to the joint effects of climate change and biochar application needs to be better understood by investigating its main pools. Here, we evaluated the effects of partial rain exclusion (∼30%) and temperature increase (∼2 °C), combined with biochar amendment, on the distribution of soil organic matter (SOM) into particulate organic matter (POM) and the mineral-associated organic matter (MAOM). A set of indices suggested an increase in thermal stability in response to biochar addition in both POM and MAOM fractions. The MAOM fraction, compared to the POM, was particularly enriched in labile substances. Data from micro-Raman spectroscopy suggested that the POM fraction contained biochar particles with a more ordered structure, whereas the structural order decreased in the MAOM fraction, especially after climate manipulation. Crystalline Fe oxides (hematite) and a mix of ferrihydrite and hematite were detected in the POM and in the MAOM fraction, respectively, of the unamended plots under climate manipulation, but not under ambient conditions. Conversely, in the amended soil, climate manipulation did not induce changes in Fe speciation. Our work underlines the importance of discretely taking into account responses of both MAOM and POM to better understand the mechanistic drivers of SOC storage and dynamics.


Assuntos
Mudança Climática , Solo , Solo/química , Carvão Vegetal , Carbono , Material Particulado
17.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570845

RESUMO

A series of new cluster compounds with {Re4Mo2S8} and {Re3Mo3S8} cores has been obtained and investigated. The clusters with different Re/Mo ratios were isolated as individual compounds, which made it possible to study their spectroscopic and electrochemical properties. The geometry of the new clusters was studied using a combination of X-ray diffraction analysis, XAS and quantum chemical DFT calculations. It was shown that the properties of the new clusters, such as the number and position of electrochemical transitions, electronic structure and change in geometry with a change in charge, are similar to the properties of clusters based on the {Re4Mo2Se8} and {Re3Mo3Se8} cores described earlier.

18.
Angew Chem Int Ed Engl ; 62(45): e202312645, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37723118

RESUMO

CO2 hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In2 O3 (Palldium on Indium Oxide) catalysts show high CO2 conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd-In alloy, proximate metals, or distinct sites. In this work, we demonstrate that metal-efficient Pd/In2 O3 species dispersed on Al2 O3 can match the performance of pure Pd/In2 O3 systems. Further, we follow the evolution of both Pd and In sites, and surface species, under operando reaction conditions using X-ray Absorption Spectroscpy (XAS) and infrared (IR) spectroscopy. In doing so, we can determine both the nature of the active sites and the influence on the catalytic mechanism.

19.
Angew Chem Int Ed Engl ; 62(25): e202217791, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36869617

RESUMO

The redox activity of Cu ions bound to the amyloid-ß (Aß) peptide is implicated as a source of oxidative stress in the context of Alzheimer's disease. In order to explain the efficient redox cycling between CuII -Aß (distorted square-pyramidal) and CuI -Aß (digonal) resting states, the existence of a low-populated "in-between" state, prone to bind Cu in both oxidation states, has been postulated. Here, we exploited the partial X-ray induced photoreduction at 10 K, followed by a thermal relaxation at 200 K, to trap and characterize by X-ray Absorption Spectroscopy (XAS) a partially reduced Cu-Aß1-16 species different from the resting states. Remarkably, the XAS spectrum is well-fitted by a previously proposed model of the "in-between" state, hence providing the first direct spectroscopic characterization of an intermediate state. The present approach could be used to explore and identify the catalytic intermediates of other relevant metal complexes.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Cobre/química , Raios X , Doença de Alzheimer/metabolismo , Oxirredução , Espectroscopia por Absorção de Raios X
20.
Small ; 18(29): e2201974, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35666000

RESUMO

A encapsulation-adsorption-pyrolysis strategy for the construction of atomically dispersed Co-Te diatomic sites (DASs) that are anchored in N-doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The as-constructed catalyst shows the stable CoN3 C1 -TeN1 C3 coordination structure before and after HER and ORR. The *OOH/*H intermediate species are captured by in situ Raman and in situ attenuated total reflectance-surface enhanced infrared absorption spectroscopy, indicating that the reactant O2 /H2 O molecule has a strong interaction with the Co site, revealing that Coδ+ is an effective active site. Theoretical calculations show that the Coδ+ has adsorption-activation function and the neighboring Teδ+ acts as an electron donor adjusting the electronic structure of Coδ+ , promoting the dissociation of H2 O molecules and the adsorption of H and oxygen-containing intermediates in HER and ORR. In the meanwhile, the nearest C atom around Co also profoundly affects the adsorption of H atoms. This results in the weakening of the OH adsorption and enhancement of H adsorption, as well as the more stable water molecule dissociation transition state, thus significantly boosting ORR and HER performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa