RESUMO
Early onset ataxia (EOA) and developmental coordination disorder (DCD) both affect cerebellar functioning in children, making the clinical distinction challenging. We here aim to derive meaningful features from quantitative SARA-gait data (i.e., the gait test of the scale for the assessment and rating of ataxia (SARA)) to classify EOA and DCD patients and typically developing (CTRL) children with better explainability than previous classification approaches. We collected data from 18 EOA, 14 DCD and 29 CTRL children, while executing both SARA gait tests. Inertial measurement units were used to acquire movement data, and a gait model was employed to derive meaningful features. We used a random forest classifier on 36 extracted features, leave-one-out-cross-validation and a synthetic oversampling technique to distinguish between the three groups. Classification accuracy, probabilities of classification and feature relevance were obtained. The mean classification accuracy was 62.9% for EOA, 85.5% for DCD and 94.5% for CTRL participants. Overall, the random forest algorithm correctly classified 82.0% of the participants, which was slightly better than clinical assessment (73.0%). The classification resulted in a mean precision of 0.78, mean recall of 0.70 and mean F1 score of 0.74. The most relevant features were related to the range of the hip flexion-extension angle for gait, and to movement variability for tandem gait. Our results suggest that classification, employing features representing different aspects of movement during gait and tandem gait, may provide an insightful tool for the differential diagnoses of EOA, DCD and typically developing children.
Assuntos
Ataxia , Ataxia Cerebelar , Criança , Humanos , Ataxia/diagnóstico , Marcha , Movimento , ProbabilidadeRESUMO
Metabotropic glutamate receptor 1 (mGluR1) plays a crucial role in slow excitatory postsynaptic conductance, synapse formation, synaptic plasticity, and motor control. The GRM1 gene is expressed mainly in the brain, with the highest expression in the cerebellum. Mutations in the GRM1 gene have previously been known to cause autosomal recessive and autosomal dominant spinocerebellar ataxias. In this study, whole-exome sequencing of a patient from a family of Azerbaijani origin with a diagnosis of congenital cerebellar ataxia was performed, and a new homozygous missense mutation in the GRM1 gene was identified. The mutation leads to the homozygous amino acid substitution of p.Thr824Arg in an evolutionarily highly conserved region encoding the transmembrane domain 7, which is critical for ligand binding and modulating of receptor activity. This is the first report in which a mutation has been identified in the last transmembrane domain of the mGluR1, causing a congenital autosomal recessive form of cerebellar ataxia with no obvious intellectual disability. Additionally, we summarized all known presumable pathogenic genetic variants in the GRM1 gene to date. We demonstrated that multiple rare variants in the GRM1 underlie a broad diversity of clinical neurological and behavioral phenotypes depending on the nature and protein topology of the mutation.
Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Receptores de Glutamato Metabotrópico , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/congênito , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Deficiência Intelectual/genética , Mutação , Linhagem , Receptores de Glutamato Metabotrópico/genética , Degenerações Espinocerebelares/congênito , Degenerações Espinocerebelares/genéticaRESUMO
Overlapping phenotypic features between Early Onset Ataxia (EOA) and Developmental Coordination Disorder (DCD) can complicate the clinical distinction of these disorders. Clinical rating scales are a common way to quantify movement disorders but in children these scales also rely on the observer's assessment and interpretation. Despite the introduction of inertial measurement units for objective and more precise evaluation, special hardware is still required, restricting their widespread application. Gait video recordings of movement disorder patients are frequently captured in routine clinical settings, but there is presently no suitable quantitative analysis method for these recordings. Owing to advancements in computer vision technology, deep learning pose estimation techniques may soon be ready for convenient and low-cost clinical usage. This study presents a framework based on 2D video recording in the coronal plane and pose estimation for the quantitative assessment of gait in movement disorders. To allow the calculation of distance-based features, seven different methods to normalize 2D skeleton keypoint data derived from pose estimation using deep neural networks applied to freehand video recording of gait were evaluated. In our experiments, 15 children (five EOA, five DCD and five healthy controls) were asked to walk naturally while being videotaped by a single camera in 1280 × 720 resolution at 25 frames per second. The high likelihood of the prediction of keypoint locations (mean = 0.889, standard deviation = 0.02) demonstrates the potential for distance-based features derived from routine video recordings to assist in the clinical evaluation of movement in EOA and DCD. By comparison of mean absolute angle error and mean variance of distance, the normalization methods using the Euclidean (2D) distance of left shoulder and right hip, or the average distance from left shoulder to right hip and from right shoulder to left hip were found to better perform for deriving distance-based features and further quantitative assessment of movement disorders.
Assuntos
Marcha , Transtornos dos Movimentos , Ataxia , Criança , Humanos , Movimento , Transtornos dos Movimentos/diagnóstico , Esqueleto , Gravação em VídeoRESUMO
Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH) is a neurodegenerative disorder caused by mutation in the aprataxin (APTX)-coding gene APTX, which is involved in DNA single-strand break repair (SSBR). The neurological abnormalities associated with EAOH are similar to those observed in patients with ataxia-telangiectasia. However, the immunological abnormalities in patients with EAOH have not been described. In this study, we report that EAOH patients have immunological abnormalities, including lymphopenia; decreased levels of CD4+ T-cells, CD8+ T-cells, and B-cells; hypogammaglobulinemia; low T-cell recombination excision circles and kappa-deleting element recombination circles; and oligoclonality of T-cell receptor ß-chain variable repertoire. These immunological abnormalities vary among the EAOH patients. Additionally, mild radiosensitivity in the lymphocytes obtained from the patients with EAOH was demonstrated. These findings suggested that the immunological abnormalities and mild radiosensitivity evident in patients with EAOH could be probably caused by the DNA repair defects.
Assuntos
Apraxias/imunologia , Ataxia Cerebelar/congênito , Hipoalbuminemia/imunologia , Adolescente , Adulto , Apraxias/genética , Apraxias/metabolismo , Estudos de Casos e Controles , Ataxia Cerebelar/genética , Ataxia Cerebelar/imunologia , Ataxia Cerebelar/metabolismo , Criança , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Feminino , Genes Codificadores dos Receptores de Linfócitos T , Variação Genética , Humanos , Hipoalbuminemia/genética , Hipoalbuminemia/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Tolerância a Radiação/genética , Tolerância a Radiação/imunologia , Linfócitos T/imunologia , Adulto JovemRESUMO
Inherited ataxias are a group of highly heterogeneous, complex neurological disorders representing a significant diagnostic challenge in clinical practice. We performed a next-generation sequencing (NGS) analysis in 10 index cases with unexplained progressive cerebellar ataxia of suspected autosomal recessive inheritance. A definite molecular diagnosis was obtained in 5/10 families and included the following diseases: autosomal recessive spastic ataxia of Charlevoix-Saguenay, POLR3B-related hypomyelinating leukodystrophy, primary coenzyme Q10 deficiency type 4, Niemann-Pick disease type C1 and SYNE1-related ataxia. In addition, we found a novel homozygous MTCL1 loss of function variant p.(Lys407fs) in a 23-year-old patient with slowly progressive cerebellar ataxia, mild intellectual disability, seizures in childhood and episodic pain in the lower limbs. The identified variant is predicted to truncate the protein after first 444 of 1586 amino acids. MTCL1 encodes a microtubule-associated protein highly expressed in cerebellar Purkinje cells; its knockout in a mouse model causes ataxia. We propose MTCL1 as a candidate gene for autosomal recessive cerebellar ataxia in humans. In addition, our study confirms the high diagnostic yield of NGS in early-onset cerebellar ataxias, with at least 50% detection rate in our ataxia cohort.
Assuntos
Ataxia/diagnóstico , Ataxia/genética , Heterogeneidade Genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fenótipo , Idade de Início , Alelos , Criança , Pré-Escolar , Feminino , Frequência do Gene , Testes Genéticos , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , PolôniaRESUMO
Boucher-Neuhäuser and Gordon Holmes syndromes are clinical syndromes defined by early-onset ataxia and hypogonadism plus chorioretinal dystrophy (Boucher-Neuhäuser syndrome) or brisk reflexes (Gordon Holmes syndrome). Here we uncover the genetic basis of these two syndromes, demonstrating that both clinically distinct entities are allelic for recessive mutations in the gene PNPLA6. In five of seven Boucher-Neuhäuser syndrome/Gordon Holmes syndrome families, we identified nine rare conserved and damaging mutations by applying whole exome sequencing. Further, by dissecting the complex clinical presentation of Boucher-Neuhäuser syndrome and Gordon Holmes syndrome into its neurological system components, we set out to analyse an additional 538 exomes from families with ataxia (with and without hypogonadism), pure and complex hereditary spastic paraplegia, and Charcot-Marie-Tooth disease type 2. We identified four additional PNPLA6 mutations in spastic ataxia and hereditary spastic paraplegia families, revealing that Boucher-Neuhäuser and Gordon Holmes syndromes in fact represent phenotypic clusters on a spectrum of neurodegenerative diseases caused by mutations in PNPLA6. Structural analysis indicates that the majority of mutations falls in the C-terminal phospholipid esterase domain and likely inhibits the catalytic activity of PNPLA6, which provides the precursor for biosynthesis of the neurotransmitter acetylcholine. Our findings show that PNPLA6 influences a manifold of neuronal systems, from the retina to the cerebellum, upper and lower motor neurons and the neuroendocrine system, with damage of this protein causing an extraordinarily broad continuous spectrum of associated neurodegenerative disease.
Assuntos
Ataxia Cerebelar/genética , Hormônio Liberador de Gonadotropina/deficiência , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Hipogonadismo/genética , Mutação/genética , Fosfolipases/genética , Distrofias Retinianas/genética , Ataxias Espinocerebelares/genética , Adulto , Ataxia/etiologia , Ataxia/genética , Ataxia Cerebelar/fisiopatologia , DNA/genética , Exoma/genética , Família , Feminino , Hormônio Liberador de Gonadotropina/genética , Transtornos Heredodegenerativos do Sistema Nervoso/fisiopatologia , Humanos , Hipogonadismo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação/fisiologia , Distrofias Retinianas/fisiopatologia , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/fisiopatologiaRESUMO
BACKGROUND: Spinocerebellar ataxia 29 (SCA29) is a rare genetic disorder characterized by early-onset ataxia, gross motor delay, and infantile hypotonia, and is primarily associated with variants in the ITPR1 gene. Cases of SCA29 in Asia are rarely reported, limiting our understanding of this disease. METHODS: A female Korean infant, demonstrating clinical features of SCA29, underwent evaluation and rehabilitation at our outpatient clinic from the age of 3 months to the current age of 4 years. Trio-based genome sequencing tests were performed on the patient and her biological parents. RESULTS: The infant initially presented with macrocephaly, hypotonia, and nystagmus, with nonspecific findings on initial neuroimaging. Subsequent follow-up revealed gross motor delay, early onset ataxia, strabismus, and cognitive impairment. Further neuroimaging revealed atrophy of the cerebellum and vermis, and genetic analysis revealed a de novo pathogenic heterozygous c.800C>T, p.Thr267Met missense mutation in the ITPR1 gene (NM_001378452.1). CONCLUSION: This is the first reported case of SCA29 in a Korean patient, expanding the genetic and phenotypic spectrum of ITPR1-related ataxias. Our case highlights the importance of recognizing early-onset ataxic symptoms, central hypotonia, and gross motor delays with poor ocular fixation, cognitive deficits, and isolated cerebellar atrophy as crucial clinical indicators of SCA29.
Assuntos
Receptores de Inositol 1,4,5-Trifosfato , Mutação de Sentido Incorreto , Degenerações Espinocerebelares , Humanos , Feminino , Receptores de Inositol 1,4,5-Trifosfato/genética , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Pré-Escolar , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , LactenteRESUMO
BACKGROUND: Early onset ataxia (EOA) and Early Onset Dystonia (EOD) are movement disorders developing in young people (age <25 per definition). These disorders result from dysfunctional networks involving the cerebellum and basal ganglia. As these structures are also important for cognition, cognitive deficits can be expected in EOA and EOD. EOA and EOD sometimes co-occur, but in those cases the predominant phenotype is determining. A pending question is whether predominantly EOA and EOD have different profiles of cognitive impairment. OBJECTIVES: We investigated whether cognitive functions were impaired in patients with either predominant EOA or predominant EOD and whether cognitive profiles differed between both patient groups. METHODS: The sample consisted of 26 EOA and 26 EOD patients with varying etiology but similar duration and severity of the disorder. Patient samples were compared to a group of 26 healthy controls, all matched on age and gender. All participants underwent neuropsychological testing for verbal intelligence, memory, working memory, attention/cognitive speed, executive functions, emotion recognition and language. RESULTS: EOA and EOD patients both performed significantly worse than healthy controls on tests of verbal intelligence, working memory and executive functions. Additionally, attention/cognitive speed and emotion recognition were impaired in the EOA group. Compared to EOD, EOA patients performed worse on attention/cognitive speed and verbal intelligence. CONCLUSIONS: Our results show overall similar profiles of cognitive deficits in both patient groups, but deficits were more pronounced in the patients with EOA. This suggests that more severe cognitive impairment is related to more severe cerebellar network dysfunction.
Assuntos
Ataxia , Distonia , Testes Neuropsicológicos , Humanos , Feminino , Masculino , Estudos Transversais , Adolescente , Adulto Jovem , Distonia/psicologia , Distonia/etiologia , Ataxia/fisiopatologia , Ataxia/etiologia , Adulto , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Criança , Idade de Início , Função Executiva/fisiologiaRESUMO
INTRODUCTION: Genetically inherited ataxic disorders are classified by their age of disease presentation into early- and late-onset ataxia (EOA and LOA, presenting before or after the 25th year-of-life). In both disease groups, comorbid dystonia co-occurs frequently. Despite overlapping genes and pathogenetic features, EOA, LOA and dystonia are considered as different genetic entities with a separate diagnostic approach. This often leads to diagnostic delay. So far, the possibility of a disease continuum between EOA, LOA and mixed ataxia-dystonia has not been explored in silico. In the present study, we analyzed the pathogenetic mechanisms underlying EOA, LOA and mixed ataxia-dystonia. METHODS: We analyzed the association of 267 ataxia genes with comorbid dystonia and anatomical MRI lesions in literature. We compared anatomical damage, biological pathways, and temporal cerebellar gene expression between EOA, LOA and mixed ataxia-dystonia. RESULTS: The majority (≈65%) of ataxia genes were associated with comorbid dystonia in literature. Both EOA and LOA gene groups with comorbid dystonia were significantly associated with lesions in the cortico-basal-ganglia-pontocerebellar network. EOA, LOA and mixed ataxia-dystonia gene groups were enriched for biological pathways related to nervous system development, neural signaling and cellular processes. All genes revealed similar cerebellar gene expression levels before and after 25 years of age and during cerebellar development. CONCLUSION: In EOA, LOA and mixed ataxia-dystonia gene groups, our findings show similar anatomical damage, underlying biological pathways and temporal cerebellar gene expression patterns. These findings may suggest the existence of a disease continuum, supporting the diagnostic use of a unified genetic approach.
Assuntos
Ataxia Cerebelar , Distonia , Distúrbios Distônicos , Humanos , Distonia/diagnóstico , Distonia/genética , Diagnóstico Tardio , Idade de Início , Ataxia/diagnóstico , Ataxia/genética , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/genéticaRESUMO
OBJECTIVES: Early onset ataxia (EOA) concerns a heterogeneous disease group, often presenting with other comorbid phenotypes such as myoclonus and epilepsy. Due to genetic and phenotypic heterogeneity, it can be difficult to identify the underlying gene defect from the clinical symptoms. The pathological mechanisms underlying comorbid EOA phenotypes remain largely unknown. The aim of this study is to investigate the key pathological mechanisms in EOA with myoclonus and/or epilepsy. METHODS: For 154 EOA-genes we investigated (1) the associated phenotype (2) reported anatomical neuroimaging abnormalities, and (3) functionally enriched biological pathways through in silico analysis. We assessed the validity of our in silico results by outcome comparison to a clinical EOA-cohort (80 patients, 31 genes). RESULTS: EOA associated gene mutations cause a spectrum of disorders, including myoclonic and epileptic phenotypes. Cerebellar imaging abnormalities were observed in 73-86% (cohort and in silico respectively) of EOA-genes independently of phenotypic comorbidity. EOA phenotypes with comorbid myoclonus and myoclonus/epilepsy were specifically associated with abnormalities in the cerebello-thalamo-cortical network. EOA, myoclonus and epilepsy genes shared enriched pathways involved in neurotransmission and neurodevelopment both in the in silico and clinical genes. EOA gene subgroups with myoclonus and epilepsy showed specific enrichment for lysosomal and lipid processes. CONCLUSIONS: The investigated EOA phenotypes revealed predominantly cerebellar abnormalities, with thalamo-cortical abnormalities in the mixed phenotypes, suggesting anatomical network involvement in EOA pathogenesis. The studied phenotypes exhibit a shared biomolecular pathogenesis, with some specific phenotype-dependent pathways. Mutations in EOA, epilepsy and myoclonus associated genes can all cause heterogeneous ataxia phenotypes, which supports exome sequencing with a movement disorder panel over conventional single gene panel testing in the clinical setting.
Assuntos
Ataxia Cerebelar , Epilepsia , Mioclonia , Humanos , Mioclonia/complicações , Mioclonia/epidemiologia , Mioclonia/genética , Ataxia/complicações , Ataxia/epidemiologia , Ataxia/genética , Epilepsia/complicações , Epilepsia/epidemiologia , Epilepsia/genética , ComorbidadeRESUMO
BACKGROUND: The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS: In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS: In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS: EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Assuntos
Distonia , Distúrbios Distônicos , Animais , Ataxia , Gânglios da Base , Cerebelo , HumanosRESUMO
BACKGROUND: Biallelic STUB1 variants are a well-established cause of autosomal-recessive early-onset multisystemic ataxia (SCAR16). Evidence for STUB1 variants causing autosomal-dominant ataxia (SCA48) so far largely relies on segregation data in larger families. Presenting the first de novo occurrence of a heterozygous STUB1 variant, we here present additional qualitative evidence for STUB1-disease as an autosomal-dominant disorder. METHODS: Whole exome sequencing on an index patient with sporadic early-onset ataxia, followed by Sanger sequencing in all family members, was used to identify causative variants as well as to rule out alternative genetic hits and intronic STUB1 variants. STUB1 mRNA and protein levels in PBMCs in all family members were analysed using qRT-PCR and Western Blot. RESULTS: A previously unreported start-lost loss-of-function variant c.3G>A in the start codon of STUB1 was identified in the index case, occurring de novo and without evidence for a second (potentially missed) variant (e.g., intronic or copy number) in STUB1. The patient showed an early adult-onset multisystemic ataxia complicated by spastic gait disorder, distal myoclonus and cognitive dysfunction, thus closely mirroring the systems affected in autosomal-recessive STUB1-associated disease. In line with the predicted start-lost effect of the variant, functional investigations demonstrated markedly reduced STUB1 protein expression in PBMCs, whereas mRNA levels were intact. CONCLUSION: De novo occurrence of the loss-of-function STUB1 variant in our case with multisystemic ataxia provides a qualitatively additional line of evidence for STUB1-disease as an autosomal-dominant disorder, in which the same neurological systems are affected as in its autosomal-recessive counterpart. Moreover, this finding adds support for loss-of-function as a mechanism underlying autosomal-dominant STUB1-disease, thus mirroring its autosomal-recessive counterpart also in terms of the underlying mutational mechanism.
Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Adulto , Ataxia/genética , Humanos , Linhagem , Fenótipo , Ubiquitina-Proteína Ligases/genéticaRESUMO
BACKGROUND: Early Onset Ataxia (EOA) and Developmental Coordination Disorder (DCD) share several phenotypical characteristics, which can be clinically hard to distinguish. AIM: To combine quantified movement information from three tests obtained from inertial measurements units (IMUs), to improve the classification of EOA and DCD patients and healthy controls compared to using a single test. METHODS: Using IMUs attached to the upper limbs, we collected data from EOA, DCD and healthy control children while they performed the three upper limb tests (finger to nose, finger chasing and fast alternating movements) from the Scale for the Assessment and Rating of Ataxia (SARA) test. The most relevant features for classification were extracted. A random forest classifier with 300 trees was used for classification. The area under the receiver operating curve (ROC-AUC) and precision-recall plots were used for classification performance assessment. RESULTS: The most relevant discerning features concerned smoothness and velocity of movements. Classification accuracy on group level was 85.6% for EOA, 63.5% for DCD and 91.2% for healthy control children. In comparison, using only the finger to nose test for classification 73.7% of EOA and 53.4% of DCD patients and 87.2% of healthy controls were accurately classified. For the ROC/precision recall plots the AUC was 0.96/0.89 for EOA, 0.92/0.81 for DCD and 0.97/0.94 for healthy control children. DISCUSSION: Using quantified movement information from all three SARA-kinetic upper limb tests improved the classification of all diagnostic groups, and in particular of the DCD group compared to using only the finger to nose test.
Assuntos
Ataxia Cerebelar , Transtornos das Habilidades Motoras , Ataxia/diagnóstico , Criança , Humanos , Movimento , Extremidade SuperiorRESUMO
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare neurodegenerative disorder caused by biallelic mutations in the SACS gene. Once thought to be limited to Charlevoix-Saguenay region of Quebec, recent evidence has indicated that this disorder is present worldwide. It is classically characterized by the triad of ataxia, pyramidal involvement, and axonal-demyelinating sensorimotor neuropathy. However, diverse clinical features have been reported to be associated with this disorder. In this report, we present the first Iranian family affected by ARSACS with unique clinical features (mirror movements, hypokinesia/bradykinesia, and rigidity) harboring a novel deletion mutation in the SACS gene. Our findings expand the genetic and phenotypic spectrum of this disorder.
RESUMO
BACKGROUND: Friedreich Ataxia (FRDA) and other inherited chronic ataxias (CAs) are common causes of early onset ataxias (EOA), a group of conditions still lacking effective therapies and biomarkers. Ocular saccades are considered a reliable paradigm of motor control, useful to track the functioning of underlying neural networks and serving as potential markers for neurological diseases. NEW METHOD: A non-invasive video-oculography device (EyeSeeCam) was used to test saccadic parameters (latency, amplitude, duration, velocity) and peak velocity/amplitude ratio ("main sequence") in pediatric patients with FRDA, CAs and healthy controls, providing correlations with standard clinical scores. RESULTS: Pattern of saccadic features differed between CA and FRDA. The main sequence analysis was impaired respectively in vertical saccades in CA, and in horizontal saccades in FRDA. In CA, the amplitude of vertical saccades was reduced, and the size inversely correlated with the Scale for the assessment and rating of ataxia (SARA) score. In FRDA the amplitude of horizontal saccades directly correlated with SARA score. COMPARISON WITH EXISTING METHOD: EyeSeeCam allowed testing saccades easily and quickly even in pediatric patients with EOA. CONCLUSIONS: The pattern of saccadic impairment differed between FRDA and CAs, resulting a prominent involvement of vertical saccades in CA and of horizontal ones in FRDA, which respectively correlated with SARA score. Since such differences may reflect distinct pathophysiological substrates, saccades emerged as a potential source of biomarkers in EOAs. Availability of handy tools, such as EyeSeeCam, may facilitate future research in this field.
Assuntos
Ataxia de Friedreich , Movimentos Sacádicos , Dispositivos Eletrônicos Vestíveis , Ataxia , Criança , Ataxia de Friedreich/diagnóstico , HumanosRESUMO
BACKGROUND AND OBJECTIVE: Early onset ataxias (EOAs) are a heterogeneous group of neurological conditions, responsible for severe motor disability in paediatric age, which still lack reliable outcome measures. Available scales to assess ataxia, such as the Scale for Assessment and Rating of Ataxia (SARA), are based on subjective assessment of specific motor and language tasks by an examiner, and therefore is age dependent and lacks accuracy in detecting small variations in disease severity. In last years, novel technologies, including computer interfaces and videogames, have emerged for clinical applications and the advent of Internet of Medical Things and of Information Communication Technology have allowed the remote control of such technologies. This pilot study describes a newly developed tool (SaraHome) for the assessment at home of EOA evaluating its feasibility and acceptability on a small sample of children. METHODS: Ten EOA children and ten caregivers have been enrolled for a preliminary outpatient evaluation. The Microsoft Kinect 2.0 and Leap Motion Controller (LMC) connected to a personal computer with an ad hoc software have been set-up, for the acquisition of standardized motor tasks performed by the patients with the caregivers' assistance. Acceptance and practicability have been tested by QUEST 2.0 and IMI questionnaires in caregivers and patients respectively. RESULTS: The SaraHome software was developed, based on a collection of services provided by a complex architecture that consists of a Restful interface, which enables to access a series of plugins for the execution of different tasks. A graphical user interface allows the acquisition of the patient movements while performing a motor task. A protocol of standard tasks inspired by SARA was established, and a system of video-assisted instruction provided. The set-up for the optimal acquisition of such protocol by Kinect and LMC has been defined. Both patients and caregivers accomplished the SaraHome assessment with good feedback at the technology acceptance questionnaires. CONCLUSIONS: SaraHome represents a newly developed tool for the assessment of ataxia in patients, resulting from the integration of low-cost and easy-accessible technologies. This pilot application highlighted the feasibility and the acceptability of the system, suggesting the potential use in clinical practice.
Assuntos
Ataxia/fisiopatologia , Ataxia/terapia , Transtornos Motores/fisiopatologia , Transtornos Motores/terapia , Movimento , Atividades Cotidianas , Adolescente , Criança , Computadores , Pessoas com Deficiência , Feminino , Marcha , Humanos , Masculino , Satisfação do Paciente , Projetos Piloto , Desempenho Psicomotor , Postura Sentada , Software , Inquéritos e Questionários , Interface Usuário-Computador , Jogos de VídeoRESUMO
In degenerative adult onset ataxia (AOA), dystonic comorbidity is attributed to one disease continuum. However, in early adult onset ataxia (EOA), the prevalence and pathogenesis of dystonic comorbidity (EOAD+), are still unclear. In 80 EOA-patients, we determined the EOAD+-prevalence in association with MRI-abnormalities. Subsequently, we explored underlying biological pathways by genetic network and functional enrichment analysis. We checked pathway-outcomes in specific EOAD+-genotypes by comparing results with non-specifically (in-silico-determined) shared genes in up-to-date EOA, AOA and dystonia gene panels (that could concurrently cause ataxia and dystonia). In the majority (65%) of EOA-patients, mild EOAD+-features concurred with extra-cerebellar MRI abnormalities (at pons and/or basal-ganglia and/or thalamus (p = 0.001)). Genetic network and functional enrichment analysis in EOAD+-genotypes indicated an association with organelle- and cellular-component organization (important for energy production and signal transduction). In non-specifically, in-silico-determined shared EOA, AOA and dystonia genes, pathways were enriched for Krebs-cycle and fatty acid/lipid-metabolic processes. In frequently occurring EOAD+-phenotypes, clinical, anatomical and biological pathway analyses reveal shared pathophysiology between ataxia and dystonia, associated with cellular energy metabolism and network signal transduction. Insight in the underlying pathophysiology of heterogeneous EOAD+-phenotype-genotype relationships supports the rationale for testing with complete, up-to-date movement disorder gene lists, instead of single EOA gene-panels.
RESUMO
Early onset cerebellar Ataxia (EOAc) comprises a large group of rare heterogeneous disorders. Determination of the underlying etiology can be difficult given the broad differential diagnosis and the complexity of the genotype-phenotype relationships. This may change the diagnostic work-up into a time-consuming, costly and not always rewarding task. In this overview, the Childhood Ataxia and Cerebellar Group of the European Pediatric Neurology Society (CACG-EPNS) presents a diagnostic algorithm for EOAc patients. In seven consecutive steps, the algorithm leads the clinician through the diagnostic process, including EOA identification, application of the Inventory of Non-Ataxic Signs (INAS), consideration of the family history, neuro-imaging, laboratory investigations, genetic testing by array CGH and Next Generation Sequencing (NGS). In children with EOAc, this algorithm is intended to contribute to the diagnostic process and to allow uniform data entry in EOAc databases.
Assuntos
Algoritmos , Sistemas de Apoio a Decisões Clínicas , Degenerações Espinocerebelares/diagnóstico , Adolescente , Criança , Diagnóstico Diferencial , Feminino , Humanos , MasculinoRESUMO
Recessive ataxias (spinocerebellar ataxias, recessive or SCARs) are a heterogeneous group of rare, mostly neurodegenerative genetic disorders which usually start in childhood or early adult life. They can be subdivided into two major groups: predominant sensory or afferent ataxias, which are disorders mainly of the peripheral input to the cerebellum, and predominant cerebellar ataxias, in which the cerebellum is primarily affected. Next-generation sequencing technology has enabled the identification of >100 novel SCAR genes in the last 5 years, although most of them are ultrarare. To guide clinical workup and management in SCARs, we provide an up-to-date overview of the most frequent SCARs and their phenotypic features. These include Friedreich ataxia, spastic paraplegia type 7-related ataxia, autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and spectrin repeat-containing nuclear envelope protein (SYNE)-related ataxia. In some restricted populations ARSACS or ataxia with vitamin E deficiency (AVED) is most common. All require a high index of suspicion in patients who present with an early-onset disorder of balance, especially children, in whom normal development and the lack of typical clinical characteristics seen in later stages of the respective SCARs can confuse the clinical picture. We summarize the diagnostic features which can help guide diagnosis, the natural history for common SCARs, and the approach to therapy, both in current use and in ongoing clinical trials. We also provide a summary table for other clinically relevant SCARs. Based on the frequency data, phenotypes, and the cost-effectiveness of recent next-generation sequencing approaches, we conclude with a diagnostic algorithm for the workup of patients with unexplained SCAR.
Assuntos
Genes Recessivos/genética , Ataxias Espinocerebelares/genética , Ataxia/complicações , Ataxia/genética , Proteínas do Citoesqueleto , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Técnicas de Diagnóstico Molecular , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neuroimagem , Proteínas Nucleares/genética , Ataxias Espinocerebelares/classificação , Ataxias Espinocerebelares/diagnóstico por imagem , Deficiência de Vitamina E/complicações , Deficiência de Vitamina E/genéticaRESUMO
Early-Onset Ataxia (EOA) and Developmental Coordination Disorder (DCD) are two conditions that affect coordination in children. Phenotypic identification of impaired coordination plays an important role in their diagnosis. Gait is one of the tests included in rating scales that can be used to assess motor coordination. A practical problem is that the resemblance between EOA and DCD symptoms can hamper their diagnosis. In this study we employed inertial sensors and a supervised classifier to obtain an automatic classification of the condition of participants. Data from shank and waist mounted inertial measurement units were used to extract features during gait in children diagnosed with EOA or DCD and age-matched controls. We defined a set of features from the recorded signals and we obtained the optimal features for classification using a backward sequential approach. We correctly classified 80.0%, 85.7%, and 70.0% of the control, DCD and EOA children, respectively. Overall, the automatic classifier correctly classified 78.4% of the participants, which is slightly better than the phenotypic assessment of gait by two pediatric neurologists (73.0%). These results demonstrate that automatic classification employing signals from inertial sensors obtained during gait maybe used as a support tool in the differential diagnosis of EOA and DCD. Furthermore, future extension of the classifier's test domains may help to further improve the diagnostic accuracy of pediatric coordination impairment. In this sense, this study may provide a first step towards incorporating a clinically objective and viable biomarker for identification of EOA and DCD.