Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Med Virol ; 96(5): e29658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727043

RESUMO

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.


Assuntos
Infecções por Echovirus , Enterovirus Humano B , Genoma Viral , Genótipo , Filogenia , Recombinação Genética , Humanos , Recém-Nascido , Genoma Viral/genética , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Infecções por Echovirus/virologia , Infecções por Echovirus/epidemiologia , Variação Genética , Sequenciamento Completo do Genoma , Evolução Molecular , Itália/epidemiologia
2.
Infection ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150641

RESUMO

PURPOSE: Recently, cases of serious illness in newborns infected with Echovirus 11 have been reported in Europe, including Italy. Here, we report the case of a newborn diagnosed with disseminated Echovirus 11 infection, which occurred in October 2023 in the Province of Bolzano, Italy. METHODS: A molecular screening, by Real-Time RT-PCR, was employed to analyse the cerebrospinal fluid, blood and stool samples, and nasal swabs. The entire viral genome was sequenced using both Illumina and Nanopore technologies. RESULTS: The patient was admitted to hospital due to fever. Molecular testing revealed the presence of enterovirus RNA. Typing confirmed the presence of Echovirus 11. The patient was initially treated with antibiotic therapy and, following the diagnosis of enterovirus infection, also with human immunoglobulins. Over the following days, the patient remained afebrile, with decreasing inflammation indices and in excellent general condition. Genomic and phylogenetic characterization suggested that the strain was similar to strains from severe cases reported in Europe. CONCLUSIONS: Despite the low overall risk for the neonatal population in Europe, recent cases of Echovirus 11 have highlighted the importance of surveillance and complete genome sequencing is fundamental to understanding the phylogenetic relationships of Echovirus 11 variants.

3.
Euro Surveill ; 29(44)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39484685

RESUMO

BackgroundIn 2023, a European alert was issued regarding an increase in severe enterovirus (EV) neonatal infections associated with echovirus 11 (E11) new lineage 1.AimTo analyse E11-positive cases between 2019 and 2023 to investigate whether the new lineage 1 circulated in Spain causing severe neonatal infections.MethodsEV-positive samples from hospitalised cases are sent for typing to the National Reference Enterovirus Laboratory. Available samples from 2022-23 were subjected to metagenomic next-generation sequencing.ResultsOf 1,288 samples genotyped, 103 were E11-positive (98 patients: 6 adults, 33 neonates, 89 children under 6 years; male to female ratio 1.9). E11 detection rate was similar before and after detection of the new lineage 1 in Spain in June 2022 (9.7% in 2019 vs 10.6% in 2023). The proportion of E11-infected ICU-admitted neonates in 2019-2022 (2/7) vs 2022-2023 (5/12) did not significantly differ (p = 0.65). In severe neonatal infections, 4/7 E11 strains were not linked to the new lineage 1. The three novel E11 recombinant genomes were associated with severe (n = 2) and non-severe (n = 1) cases from 2022-2023 and clustered outside the new lineage 1. Coinfecting pathogenic viruses were present in four of 10 E11-positive samples.ConclusionThe emergence of the new lineage 1 is not linked with an increase in incidence or severity of neonatal E11 infections in Spain. The detection of two novel E11 recombinants associated with severe disease warrants enhancing genomic and clinical surveillance.


Assuntos
Infecções por Echovirus , Enterovirus Humano B , Genótipo , Humanos , Recém-Nascido , Espanha/epidemiologia , Enterovirus Humano B/genética , Enterovirus Humano B/isolamento & purificação , Masculino , Feminino , Lactente , Infecções por Echovirus/epidemiologia , Infecções por Echovirus/virologia , Infecções por Echovirus/diagnóstico , Criança , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Adulto , Genoma Viral/genética , Genômica
4.
J Formos Med Assoc ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322496

RESUMO

BACKGROUND: Enterovirus is a common pediatric infectious disease, but the epidemiological data in young infants were lacking. This study aims to evaluate the role of enterovirus in febrile young infants and identify risk factors for severe infections. METHODS: We enrolled febrile infants younger than 90 days admitted to National Taiwan University Hospital from January 2010 to June 2021. Enterovirus infection was confirmed via viral isolation or pan-enterovirus PCR. Central nervous system involvement was defined by positive culture or PCR in cerebrospinal fluid. Severe complications included sepsis, hepatic failure, myocarditis, shock, encephalitis, acute kidney injury, respiratory failure, and multiorgan failure. RESULTS: Out of 840 febrile infants, 17.4% (n = 146) had enterovirus infection. Among these, 46% (n = 67) presented with meningitis and/or encephalitis. Early-onset enterovirus infection within the first two weeks of life was significantly linked to increased risks of anemia (hemoglobin <9 g/dL), ICU admission, central nervous system involvement, shock, hepatic failure, and mortality. Multivariable logistic regression identified high-risk serotypes (aOR 17.4, [95% CI 1.58, 191.5], p = 0.019) and hemoglobin <9 g/dL (aOR 44.9, [95% CI 5.6, 357.6], p < 0.001) as significant risk factors for severe complications. CONCLUSIONS: Enterovirus accounted for 17.4% of the etiology in febrile young infants and the case-fatality rate was 2%. Febrile young infants who had risk factors of enterovirus infection should consider viral culture or PCR examination for confirmation.

5.
Euro Surveill ; 28(24)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37318763

RESUMO

Echovirus 11 (E11) has recently been associated with a series of nine neonatal cases of severe hepatitis in France. Here, we present severe hepatitis caused by E11 in a pair of twins. In one of the neonates, the clinical picture evolved to fulminant hepatitis. The E11 genome showed 99% nucleotide identity with E11 strains reported in the cases in France. Rapid genome characterisation using next generation sequencing is essential to identify new and more pathogenetic variants.


Assuntos
Infecções por Echovirus , Hepatite A , Hepatite , Necrose Hepática Massiva , Recém-Nascido , Humanos , Masculino , Itália/epidemiologia , França/epidemiologia , Enterovirus Humano B/genética , Infecções por Echovirus/diagnóstico , Infecções por Echovirus/epidemiologia
6.
Euro Surveill ; 28(22)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37261730

RESUMO

We report nine severe neonatal infections caused by a new variant of echovirus 11. All were male, eight were twins. At illness onset, they were 3-5 days-old and had severe sepsis and liver failure. This new variant, detected in France since April 2022, is still circulating and has caused more fatal neonatal enterovirus infections in 2022 and 2023 (8/496; 1.6%, seven associated with echovirus 11) compared with 2016 to 2021 (7/1,774; 0.4%). National and international alerts are warranted.


Assuntos
Doenças Transmissíveis , Infecções por Echovirus , Infecções por Enterovirus , Enterovirus , Recém-Nascido , Humanos , Masculino , Feminino , Infecções por Echovirus/diagnóstico , Infecções por Echovirus/epidemiologia , Enterovirus Humano B/genética , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , França/epidemiologia
7.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32213614

RESUMO

Enteroviruses are common agents of infectious disease that are spread by the fecal-oral route. They are readily inactivated by mild heat, which causes the viral capsid to disintegrate or undergo conformational change. While beneficial for the thermal treatment of food or water, this heat sensitivity poses challenges for the stability of enterovirus vaccines. The thermostability of an enterovirus can be modulated by the composition of the suspending matrix, though the effects of the matrix on virus stability are not understood. Here, we determined the thermostability of four enterovirus strains in solutions with various concentrations of NaCl and different pH values. The experimental findings were combined with molecular modeling of the protein interaction forces at the pentamer and the protomer interfaces of the viral capsids. While pH only had a modest effect on thermostability, increasing NaCl concentrations raised the breakpoint temperatures of all viruses tested by up to 20°C. This breakpoint shift could be explained by an enhancement of the van der Waals attraction forces at the two protein interfaces. In comparison, the (net repulsive) electrostatic interactions were less affected by NaCl. Depending on the interface considered, the breakpoint temperature shifted by 7.5 or 5.6°C per 100-kcal/(mol·Å) increase in protein interaction force.IMPORTANCE The genus Enterovirus encompasses important contaminants of water and food (e.g., coxsackieviruses), as well as viruses of acute public health concern (e.g., poliovirus). Depending on the properties of the surrounding matrix, enteroviruses exhibit different sensitivities to heat, which in turn influences their persistence in the environment, during food treatment, and during vaccine storage. Here, we determined the effect of NaCl and pH on the heat stability of different enteroviruses and related the observed effects to changes in protein interaction forces in the viral capsid. We demonstrate that NaCl renders enteroviruses thermotolerant and that this effect stems from an increase in van der Waals forces at different protein subunits in the viral capsid. This work sheds light on the mechanism by which salt enhances virus stability.


Assuntos
Proteínas do Capsídeo/química , Enterovirus/química , Modelos Moleculares , Animais , Linhagem Celular , Chlorocebus aethiops , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Cloreto de Sódio , Temperatura
8.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

9.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836826

RESUMO

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

10.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076437

RESUMO

Virus inactivation mechanisms can be elucidated by methods that measure the loss of specific virus functionality (e.g., host attachment, genome internalization, and genome replication). Genome functionality is frequently assessed by PCR-based methods, which are indirect and potentially inaccurate; genome damage that affects detection by high-fidelity PCR enzymes may not adversely affect the ability of actual cellular enzymes to produce functional virus. Therefore, we developed here a transfection-based assay to quantitatively determine viral genome functionality by inserting viral RNA into host cells directly to measure their ability to produce new functional viruses from damaged viral genomes. Echovirus 11 was treated with ozone, free chlorine (FC), UV light at 254 nm (UV254), or heat, and then the reductions in genome functionality and infectivity were compared. Ozone reduced genome functionality proportionally to infectivity, indicating that genome damage is the main mechanism of virus inactivation. In contrast, FC caused little or no loss of genome functionality compared to infectivity, indicating a larger role for protein damage. For UV254, genome functionality loss accounted for approximately 60% of virus inactivation, with the remainder presumably due to protein damage. Heat treatment resulted in no reduction in genome functionality, in agreement with the understanding that heat inactivation results from capsid damage. Our results indicate that there is a fundamental difference between genome integrity reductions measured by PCR enzymes in previous studies and actual genome functionality (whether the genome can produce virus) after disinfection. Compared to PCR, quantitative transfection assays provide a more realistic picture of actual viral genome functionality and overall inactivation mechanisms during disinfection.IMPORTANCE This study provides a new tool for assessing virus inactivation mechanisms by directly measuring a viral genome's ability to produce new viruses after disinfection. In addition, we identify a potential pitfall of PCR for determining virus genome damage, which does not reflect whether a genome is truly functional. The results presented here using quantitative transfection corroborate previously suggested virus inactivation mechanisms for some virus inactivation methods (heat) while bringing additional insights for others (ozone, FC, and UV254). The developed transfection method provides a more mechanistic approach for the assessment of actual virus inactivation by common water disinfectants.


Assuntos
Desinfetantes/administração & dosagem , Desinfecção/instrumentação , Enterovirus Humano B/genética , Genoma Viral , Inativação de Vírus , Cloro/administração & dosagem , Enterovirus Humano B/efeitos dos fármacos , Temperatura Alta , Ozônio/administração & dosagem , Reação em Cadeia da Polimerase , Transfecção , Raios Ultravioleta
11.
IJID Reg ; 12: 100411, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39220203

RESUMO

The European Center for Disease Prevention and Control has reported 19 cases of severe echovirus 11 infections in neonates since 2022, nine of which were fatal. We report a new fatal neonatal case that occurred in a male twin for which we evaluated the respiratory and intestinal mucosal innate immune response.

12.
Emerg Microbes Infect ; 13(1): 2361814, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38828746

RESUMO

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. From 2018 to 2023, a surge in severe neonatal cases and fatalities linked to a novel variant of genotype D5 was documented in China, France, and Italy. However, the prevention and control of E11 variants have been hampered by limited background data on the virus circulation and genetic variance. Therefore, the present study investigated the circulating dynamics of E11 and the genetic variation and molecular evolution of genotype D5 through the collection of strains from the national acute flaccid paralysis (AFP) and hand, foot, and mouth disease (HFMD) surveillance system in China during 2000-2022 and genetic sequences published in the GenBank database. The results of this study revealed a prevalent dynamic of E11 circulation, with D5 being the predominant genotype worldwide. Further phylogenetic analysis of genotype D5 indicated that it could be subdivided into three important geographic clusters (D5-CHN1: 2014-2019, D5-CHN2: 2016-2022, and D5-EUR: 2022-2023). Additionally, variant-specific (144) amino acid mutation sites and positive-selection pressure sites (132, 262) were identified in the VP1 region. Cluster-specific recombination patterns were also identified, with CVB5, E6, and CVB4 as the major recombinant viruses. These findings provide a preliminary landscape of E11 circulation worldwide and basic scientific data for further study of the pathogenicity of E11 variants.


Assuntos
Enterovirus Humano B , Evolução Molecular , Variação Genética , Genótipo , Filogenia , China/epidemiologia , Humanos , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Recém-Nascido , Infecções por Echovirus/virologia , Infecções por Echovirus/epidemiologia , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/epidemiologia , Lactente
13.
Viruses ; 16(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39066174

RESUMO

After the first phase of the COVID-19 pandemic in Europe, a new highly pathogenic variant of echovirus 11 (E11) was detected. The aim of this study was to analyze the genetic diversity of Polish E11 environmental and clinical strains circulating between 2017 and 2023 as well as compare them with E11 strains isolated from severe neonatal sepsis cases reported in Europe between 2022 and 2023. Additionally, the study explores the effectiveness of environmental monitoring in tracking the spread of new variants. For this purpose, the complete sequences of the VP1 capsid protein gene were determined for 266 E11 strains isolated in Poland from 2017 to 2023, and phylogenetic analysis was performed. In the years 2017-2023, a significant increase in the detection of E11 strains was observed in both environmental and clinical samples in Poland. The Polish E11 strains represented three different genotypes, C3, D5 and E, and were characterized by a high diversity. In Poland, the intensive circulation of the new variant E11, responsible for severe neonatal infections with a high mortality in Europe, was detected in the years 2022-2023. This investigation demonstrates the important role of environmental surveillance in the tracking of enteroviruses circulation, especially in settings with limited clinical surveillance.


Assuntos
COVID-19 , Enterovirus Humano B , Filogenia , SARS-CoV-2 , Polônia/epidemiologia , Humanos , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Genótipo , Variação Genética , Proteínas do Capsídeo/genética , Recém-Nascido , Infecções por Echovirus/epidemiologia , Infecções por Echovirus/virologia , Pandemias
14.
Int J Infect Dis ; 146: 107091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38729515

RESUMO

OBJECTIVES: A new variant of echovirus 11 (E11) infection is a major health concern in neonates. Here, we describe the clinical and virological characteristics of enterovirus (EV) infections in children hospitalized with acute respiratory infection in Southern Italy. METHODS: Between July 2022 and August 2023, 173 EV infections were identified. Demographic and clinical characteristics, comorbidities, and coinfections were analyzed. Genotypes were identified by sequencing of VP1. Whole-genome sequencing of five E11 strains was performed. RESULTS: Case numbers peaked in July 2022, November-December 2022, and June-July 2023. Coxsackievirus A2 was identified in 36.7%, coxsackievirus B5 in 13.8%, echovirus E11 in 9.2%, and EV-D68 in 6.4% of cases. No child had critical symptoms or a severe infection. The only neonate infected by E11 recovered fully after 5 days in hospital. Phylogenetic analysis revealed that four E11 strains were closely related to divergent lineage I E11 strains identified in France and Italy. CONCLUSIONS: The new variant of E11 was identified in children in Southern Italy. Although the cases were mild, the data suggest that transmission routes and host factors are likely to be main drivers for the development of potentially severe diseases. Systematic epidemiological/molecular surveillance will help us better understand the clinical impact of EV infections and develop preventive strategies.


Assuntos
Enterovirus Humano B , Genótipo , Filogenia , Infecções Respiratórias , Sequenciamento Completo do Genoma , Humanos , Itália/epidemiologia , Lactente , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Masculino , Pré-Escolar , Feminino , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Recém-Nascido , Criança , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Hospitalização , Criança Hospitalizada , Enterovirus/genética , Enterovirus/classificação , Enterovirus/isolamento & purificação , Infecções por Echovirus/epidemiologia , Infecções por Echovirus/virologia , Doença Aguda , Coinfecção/virologia , Coinfecção/epidemiologia
15.
Int J Infect Dis ; 142: 106998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458420

RESUMO

OBJECTIVES: Following the alert of echovirus 11 (E-11) infection in neonates in EU/EEA Member States, we conducted an investigation of E-11 circulation by gathering data from community and hospital surveillance of enterovirus (EV) in northern Italy from 01 August 2021 to 30 June 2023. METHODS: Virological results of EVs were obtained from the regional sentinel surveillance database for influenza-like illness (ILI) in outpatients, and from the laboratory database of ten hospitals for inpatients with either respiratory or neurological symptoms. Molecular characterization of EVs was performed by sequence analysis of the VP1 gene. RESULTS: In our ILI series, the rate of EV-positive specimens showed an upward trend from the end of May 2023, culminating at the end of June, coinciding with an increase in EV-positive hospital cases. The E-11 identified belonged to the D5 genogroup and the majority (83%) were closely associated with the novel E-11 variant, first identified in severe neonatal infections in France since 2022. E-11 was identified sporadically in community cases until February 2023, when it was also found in hospitalized cases with a range of clinical manifestations. All E-11 cases were children, with 14 out of 24 cases identified through hospital surveillance. Of these cases, 60% were neonates, and 71% had severe clinical manifestations. CONCLUSION: Baseline epidemiological data collected since 2021 through EV laboratory-based surveillance have rapidly tracked the E-11 variant since November 2022, alongside its transmission during the late spring of 2023.


Assuntos
Infecções por Enterovirus , Enterovirus , Viroses , Criança , Recém-Nascido , Humanos , Lactente , Enterovirus/genética , Vigilância de Evento Sentinela , Pacientes Internados , Infecções por Enterovirus/diagnóstico , Enterovirus Humano B/genética , Itália/epidemiologia , Hospitais , Filogenia
16.
Clin Pathol ; 16: 2632010X231213793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022906

RESUMO

The surge in severe neonatal sepsis cases caused by a novel variant of Echovirus 11 (E-11) in France and several European countries has sparked concern. The affected infants, mostly premature and twins, displayed rapid clinical decline within days after birth, presenting symptoms akin to septic shock with hepatic impairment and multi-organ failure. Laboratory findings revealed profound coagulopathy, low platelet counts, and acute renal failure, indicating severe disease progression. Genetic analysis identified a distinct recombinant E-11 lineage, previously unseen in France before July 2022. Despite its novelty, the exact pathogenicity remains uncertain. Although the World Health Organization downplaying immediate public health risks, the absence of a robust global surveillance program hinders accurate prevalence assessment. To mitigate the impact of this novel E-11 variant, establishing robust surveillance, refining diagnostic capabilities, and exploring therapeutic interventions such as intravenous immunoglobulin (IVIg) and pocapavir are imperative for effective management and prevention strategies.

17.
Front Pediatr ; 11: 1063558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090924

RESUMO

Background: Echovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome. Methods: This is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses. Results: In addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8-295.1) and partial PN (OR, 12.9; 95% CI, 2.2-77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1-2.0) and platelet (PLT) < 140 × 109/L at early stage of illness (OR, 17.7; 95% CI, 1.4-221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases. Conclusions: PN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome.

18.
J Microbiol Immunol Infect ; 56(4): 766-771, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330377

RESUMO

BACKGROUND: Maternal transplacental antibody is an important origins of passive immunity against neonatal enterovirus infection. Echovirus 11 (E11) and coxsackievirus B3 (CVB3) are important types causing neonatal infections. There were few investigations of enterovirus D68 (EVD68) infection in neonates. We aimed to investigate the serostatus of cord blood for these three enteroviruses and evaluate the factors associated with seropositivity. METHODS: We enrolled 222 parturient (gestational age 34-42 weeks) women aged 20-46 years old between January and October 2021. All participants underwent questionnaire investigation and we collected the cord blood to measure the neutralization antibodies against E11, CVB3 and EVD68. RESULTS: The cord blood seropositive rates were 18% (41/222), 60% (134/232) and 95% (211/222) for E11, CVB3 and EVD68, respectively (p < 0.001). Geometric mean titers were 3.3 (95% CI 2.9-3.8) for E11, 15.9 (95% CI 12.5-20.3) for CVB3 and 109.9 (95% CI 92.4-131.6) for EVD68. Younger parturient age (33.8 ± 3.6 versus 35.2 ± 4.4, p = 0.04) was related to E11 seropositivity. Neonatal sex, gestational age and birth body weight were not significantly different between the seropositive group and the seronegative group. CONCLUSION: Cord blood seropositive rate and geometric mean titer of E11 were very low, so a large proportion of newborns are susceptible to E11. The circulation of E11 was low after 2019 in Taiwan. A large cohort of immune naïve newborns existed currently due to lack of protective maternal antibodies. It is imminent to monitor the epidemiology of neonates with enterovirus infections and strengthen the relevant preventive policies.


Assuntos
Doenças Transmissíveis , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Humanos , Recém-Nascido , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Lactente , Sangue Fetal , Enterovirus Humano B , Anticorpos
19.
J Microbiol Immunol Infect ; 54(4): 581-587, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32653431

RESUMO

BACKGROUND: Severe illness can occur in young children infected with certain types of enteroviruses including echovirus 11 (Echo11) and coxsackievirus B5 (CoxB5). The manifestations and outcomes of Echo11 and CoxB5 diseases across all ages of children remained not comprehensively characterized in Taiwan. METHODS: Culture-confirmed Echo11 (60 patients) or CoxB5 (65 patients) infections were identified in a hospital from 2010 to 2018. The demographics, clinical presentations, laboratory data and outcomes were abstracted and compared between the two viruses infections. RESULTS: Echo11 and CoxB5 was respectively identified in 7 (77.8%) and 2 (22.2%) of 9 calendar years. The median age of all patients was 15 months (range, 1 day-14.5 years). For infants ≤3 months old, Echo11 (23 cases) was associated with higher incidence of aseptic meningitis (35% versus 0%, P = 0.003), and a lower rate of upper respiratory tract infections (URI) (22% versus 65%, P = 0.004) compared to CoxB5 (20 cases) infections. For patients >3 months old, URI was the cardinal diagnosis (60%) for both viruses. Aseptic meningitis was also more commonly identified in elder children with Echo11 infections (27% versus 11%), though with marginal significance (P = 0.07). Acute liver failure was identified in four young infants with Echo11 infections including one neonate dying of severe sepsis and myocarditis. All patients with CoxB5 infections recovered uneventfully. CONCLUSION: Aseptic meningitis, sepsis-like illness and acute liver failure were more commonly identified in children with Echo11 than those with CoxB5 infections, suggesting greater neurological tropism and virulence toward Echo11.


Assuntos
Infecções por Coxsackievirus/epidemiologia , Infecções por Echovirus/epidemiologia , Enterovirus Humano B/patogenicidade , Hospitalização/estatística & dados numéricos , Adolescente , Criança , Pré-Escolar , Infecções por Coxsackievirus/complicações , Surtos de Doenças , Infecções por Echovirus/complicações , Enterovirus Humano B/classificação , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Meningite Asséptica/epidemiologia , Meningite Asséptica/virologia , Sepse/epidemiologia , Sepse/virologia , Taiwan/epidemiologia
20.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960747

RESUMO

Echovirus 11 (E11) is a neurotropic virus that occasionally causes fatal neurological diseases in infected children. However, the molecular mechanism underlying the disease and pathological spectrum of E11 infection remains unclear. Therefore, we modelled E11 infection in 2-day-old type I interferon receptor knockout (IFNAR-/-) mice, which are susceptible to enteroviruses, with E11, and identified symptoms consistent with the clinical signs observed in human cases. All organs of infected suckling mice were found to show viral replication and pathological changes; the muscle tissue showed the highest viral replication, whereas the brain and muscle tissues showed the most obvious pathological changes. Brain tissues showed oedema and a large number of dead nerve cells; RNA-Seq analysis of the brain and hindlimb muscle tissues revealed differentially expressed genes to be abundantly enriched in immune response-related pathways, with changes in the Guanylate-binding protein (GBP) and MHC class genes, causing aseptic meningitis-related symptoms. Furthermore, human glioma U251 cell was identified as sensitive target cells for E11 infection. Overall, these results provide new insights into the pathogenesis and progress of aseptic meningitis caused by E11.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecções por Echovirus/patologia , Infecções por Echovirus/virologia , Enterovirus Humano B/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Infecções por Echovirus/genética , Humanos , Meningite Asséptica/genética , Meningite Asséptica/patologia , Meningite Asséptica/virologia , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Músculo Esquelético/virologia , RNA-Seq , Receptor de Interferon alfa e beta/genética , Transcriptoma , Carga Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa