RESUMO
Growth is a function of the net accrual of resources by an organism. Energy and elemental contents of organisms are dynamically linked through their uptake and allocation to biomass production, yet we lack a full understanding of how these dynamics regulate growth rate. Here, we develop a multivariate imbalance framework, the growth efficiency hypothesis, linking organismal resource contents to growth and metabolic use efficiencies, and demonstrate its effectiveness in predicting consumer growth rates under elemental and food quantity limitation. The relative proportions of carbon (%C), nitrogen (%N), phosphorus (%P), and adenosine triphosphate (%ATP) in consumers differed markedly across resource limitation treatments. Differences in their resource composition were linked to systematic changes in stoichiometric use efficiencies, which served to maintain relatively consistent relationships between elemental and ATP content in consumer tissues and optimize biomass production. Overall, these adjustments were quantitatively linked to growth, enabling highly accurate predictions of consumer growth rates.
Assuntos
Biomassa , Carbono , Nitrogênio , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Biológicos , AnimaisRESUMO
BACKGROUND: With the dramatic uplift of the Qinghai-Tibet Plateau (QTP) and the increase in altitude in the Pliocene, the environment became dry and cold, thermophilous plants that originally inhabited ancient subtropical forest essentially disappeared. However, Quercus sect. Heterobalanus (QSH) have gradually become dominant or constructive species distributed on harsh sites in the Hengduan Mountains range in southeastern QTP, Southwest China. Ecological stoichiometry reveals the survival strategies plants adopt to adapt to changing environment by quantifying the proportions and relationships of elements in plants. Simultaneously, as the most sensitive organs of plants to their environment, the structure of leaves reflects of the long-term adaptability of plants to their surrounding environments. Therefore, ecological adaptation mechanisms related to ecological stoichiometry and leaf anatomical structure of QSH were explored. In this study, stoichiometric characteristics were determined by measuring leaf carbon (C), nitrogen (N), and phosphorus (P) contents, and morphological adaptations were determined by examining leaf anatomical traits with microscopy. RESULTS: Different QSH life forms and species had different nutrient allocation strategies. Leaves of QSH plants had higher C and P and lower N contents and higher N and lower P utilization efficiencies. According to an N: P ratio threshold, the growth of QSH species was limited by N, except that of Q. aquifolioides and Q. longispica, which was limited by both N and P. Although stoichiometric homeostasis of C, N, and P and C: N, C: P, and N: P ratios differed slightly across life forms and species, the overall degree of homeostasis was strong, with strictly homeostatic, homeostatic, and weakly homeostatic regulation. In addition, QSH leaves had compound epidermis, thick cuticle, developed palisade tissue and spongy tissue. However, leaves were relatively thin overall, possibly due to leaf leathering and lignification, which is strategy to resist stress from UV radiation, drought, and frost. Furthermore, contents of C, N, and P and stoichiometric ratios were significantly correlated with leaf anatomical traits. CONCLUSIONS: QSH adapt to the plateau environment by adjusting the content and utilization efficiencies of C, N, and P elements. Strong stoichiometric homeostasis of QSH was likely a strategy to mitigate nutrient limitation. The unique leaf structure of the compound epidermis, thick cuticle, well-developed palisade tissue and spongy tissue is another adaptive mechanism for QSH to survive in the plateau environment. The anatomical adaptations and nutrient utilization strategies of QSH may have coevolved during long-term succession over millions of years.
Assuntos
Adaptação Fisiológica , Carbono , Nitrogênio , Fósforo , Folhas de Planta , Quercus , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Quercus/anatomia & histologia , Quercus/fisiologia , Fósforo/metabolismo , Nitrogênio/metabolismo , Tibet , Carbono/metabolismo , China , EcossistemaRESUMO
Sulfur (S) is an essential bioelement with vital roles in serving regulatory and catalytic functions and tightly coupled with N and P in plants. However, globally stoichiometric patterns of leaf S and its relationships to leaf N and P are less well studied. We compiled 31 939 records of leaf-based data for 2600 plant species across 6652 sites worldwide. All plant species were divided into different phylogenetic taxa and growth forms. Standard major axis analysis was employed to fit the bivariate element relationships. A phylogenetic linear mixed-effect model and a multiple-regression model were used to partition the variations of bioelements into phylogeny and environments, and then to estimate the importance of environmental variables. Global geometric mean leaf S, N and P concentrations were 1.44, 15.70 and 1.27 mg g-1, respectively, with significant differences among plant groups. Leaf S-N-P positively correlated with each other, ignoring plant groups. The scaling exponents of LN-LS, LP-LS and LN-LP were 0.64, 0.76 and 0.79, respectively, for all species, but differed among plant groups. Both phylogeny and environments regulated the bioelements. The variability, rather than mean temperature, controlled the bioelements. Phylogeny explained more for the concentrations of all the three bioelements than environments, of which S was the one most affected by phylogenetic taxa.
Assuntos
Nitrogênio , Fósforo , Filogenia , Folhas de Planta , Enxofre , Fósforo/metabolismo , Enxofre/metabolismo , Nitrogênio/metabolismo , Plantas , Meio AmbienteRESUMO
Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.
Assuntos
Florestas , Nitrogênio , Fósforo , Solo , Solo/química , Nitrificação , Taiga , China , IncêndiosRESUMO
Parasite infections are ubiquitous and their effects on hosts could play a role in ecosystem processes. Ecological stoichiometry provides a framework to study linkages between consumers and their resource, such as parasites and their host, and ecosystem process; however, the stoichiometric traits of host-parasite associations are rarely quantified. Specifically, it is unclear whether parasites' elemental ratios closely resemble those of their host or if infection is related to host stoichiometry, especially in vertebrate hosts. To answer such questions, we measured the elemental content (%C, %N, and %P) and molar ratios (C:N, C:P, and N:P) of parasitized and unparasitized Gasterosteus aculeatus (three-spined stickleback) and their cestode parasite, Schistocephalus solidus. Host and parasite elemental content were distinct from each other, and parasites were generally higher in %C and lower in %N and %P. Parasite infections were related to host C:N, with infected hosts being lower in C:N. Parasite elemental content was independent of their host, but parasite body mass and parasite density were important drivers of parasite stoichiometry. Overall, these potential effects of parasite infections on host stoichiometry along with parasites' distinct elemental compositions suggest parasites may further contribute to differences in how individual hosts store and recycle nutrients.
Assuntos
Doenças Parasitárias , Smegmamorpha , Animais , Interações Hospedeiro-Parasita , Ecossistema , NutrientesRESUMO
Consumers respond differently to external nutrient changes than producers, resulting in a mismatch in elemental composition between them and potentially having a significant impact on their interactions. To explore the responses of herbivores and omnivores to changes in elemental composition in producers, we develop a novel stoichiometric model with an intraguild predation structure. The model is validated using experimental data, and the results show that our model can well capture the growth dynamics of these three species. Theoretical and numerical analyses reveal that the model exhibits complex dynamics, including chaotic-like oscillations and multiple types of bifurcations, and undergoes long transients and regime shifts. Under moderate light intensity and phosphate concentration, these three species can coexist. However, when the light intensity is high or the phosphate concentration is low, the energy enrichment paradox occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant, leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus promoting the coexistence of species. These findings contribute to a deeper understanding of species coexistence and biodiversity.
Assuntos
Cilióforos , Daphnia , Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Comportamento Predatório , Animais , Daphnia/fisiologia , Cilióforos/fisiologia , Fosfatos/metabolismo , Simulação por Computador , Dinâmica Populacional , Biodiversidade , Fósforo/metabolismoRESUMO
Understanding how organisms make choices about what to eat is a fascinating puzzle explored in this study, which employs stoichiometric modeling and optimal foraging principles. The research delves into the intricate balance of nutrient intake with foraging strategies, investigating quality and quantity-based food selection through mathematical models. The stoichiometric models in this study, encompassing producers and a grazer, unveils the dynamics of decision-making processes, introducing fixed and variable energetic foraging costs. Analysis reveals cell quota-dependent predation behaviors, elucidating biological phenomena such as "compensatory foraging behaviors" and the "stoichiometric extinction effect". The Marginal Value Theorem quantifies food selection, highlighting the profitability of prey items and emphasizing its role in optimizing foraging strategies in predator-prey dynamics. The environmental factors like light and nutrient availability prove pivotal in shaping optimal foraging strategies, with numerical results from a multi-species model contributing to a comprehensive understanding of the intricate interplay between organisms and their environment.
Assuntos
Comportamento Alimentar , Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Comportamento Predatório , Animais , Comportamento Alimentar/fisiologia , Ecossistema , Simulação por ComputadorRESUMO
Species, through their traits, influence how ecosystems simultaneously sustain multiple functions. However, it is unclear how trait diversity sustains the multiple contributions biodiversity makes to people. Freshwater fisheries nourish hundreds of millions of people globally, but overharvesting and river fragmentation are increasingly affecting catches. We analyse how loss of nutritional trait diversity in consumed fish portfolios affects the simultaneous provisioning of six essential dietary nutrients using household data from the Amazon and Tonlé Sap, two of Earth's most productive and diverse freshwater fisheries. We find that fish portfolios with high trait diversity meet higher thresholds of required daily intakes for a greater variety of nutrients with less fish biomass. This beneficial biodiversity effect is driven by low redundancy in species nutrient content profiles. Our findings imply that sustaining the dietary contributions fish make to people given declining biodiversity could require more biomass and ultimately exacerbate fishing pressure in already-stressed ecosystems.
Assuntos
Ecossistema , Pesqueiros , Humanos , Animais , Biomassa , Biodiversidade , Água Doce , Nutrientes , PeixesRESUMO
Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.e. organismal stoichiometry) has constrained its application. Intraspecific variation in the rates at which elements are acquired, assimilated, allocated or lost is often greater than the variation in organismal stoichiometry. There is much to gain from studying these traits together as components of an 'elemental phenotype'. Furthermore, each of these traits can have distinct ecological effects that are underappreciated in the current literature. We propose a conceptual framework that explores how microevolutionary change in the elemental phenotype occurs, how its components interact with each other and with other traits, and how its changes can affect a wide range of ecological processes. We demonstrate how the framework can be used to generate novel hypotheses and outline pathways for future research that enhance our ability to explain, analyse and predict eco-evolutionary dynamics.
Assuntos
Evolução Biológica , Ecossistema , FenótipoRESUMO
Resource quantity controls biodiversity across spatial scales; however, the importance of resource quality to cross-scale patterns in species richness has seldom been explored. We evaluated the relationship between stream basal resource quantity (periphyton chlorophyll a) and invertebrate richness and compared this to the relationship of resource quality (periphyton stoichiometry) and richness at local and regional scales across 27 North American streams. At the local scale, invertebrate richness peaked at intermediate levels of chlorophyll a, but had a shallow negative relationship with periphyton C:P and N:P. However, at the regional scale, richness had a strong negative relationship with chlorophyll a and periphyton C:P and N:P. The divergent relationships of periphyton chlorophyll a and stoichiometry with invertebrate richness suggest that autochthonous resource quantity limits diversity more than quality, consistent with patterns of eutrophication. Collectively, we provide evidence that patterns in resource quantity and quality play important, yet differing roles in shaping freshwater biodiversity across spatial scale.
Assuntos
Ecossistema , Rios , Animais , Clorofila A , Invertebrados , BiodiversidadeRESUMO
The ability to directly measure and monitor poor nutrition in individual animals and ecological communities is hampered by methodological limitations. In this study, we use nutrigenomics to identify nutritional biomarkers in a freshwater zooplankter, Daphnia pulex, a ubiquitous primary consumer in lakes and a sentinel of environmental change. We grew animals in six ecologically relevant nutritional treatments: nutrient replete, low carbon (food), low phosphorus, low nitrogen, low calcium and high Cyanobacteria. We extracted RNA for transcriptome sequencing to identify genes that were nutrient responsive and capable of predicting nutritional status with a high degree of accuracy. We selected a list of 125 candidate genes, which were subsequently pruned to 13 predictive potential biomarkers. Using a nearest-neighbour classification algorithm, we demonstrate that these potential biomarkers are capable of classifying our samples into the correct nutritional group with 100% accuracy. The functional annotation of the selected biomarkers revealed some specific nutritional pathways and supported our hypothesis that animal responses to poor nutrition are nutrient specific and not simply different presentations of slow growth or energy limitation. This is a key step in uncovering the causes and consequences of nutritional limitation in animal consumers and their responses to small- and large-scale changes in biogeochemical cycles.
Assuntos
Nutrigenômica , Fósforo , Animais , Fósforo/metabolismo , Fenótipo , Lagos , NutrientesRESUMO
Global warming has significantly affected terrestrial ecosystems. Biomass and C:N:P stoichiometry of plants and soil is crucial for enhancing plant productivity, improving human nutrition, and regulating biogeochemical cycles. However, the effect of warming on the biomass and C:N:P stoichiometry of different components (plant, leaf, stem, root, litter, soil, and microbial biomass) in various terrestrial ecosystems remains uncertain. We conducted a comprehensive meta-analysis to investigate the global patterns of biomass and C:N:P stoichiometry responses to warming, as well as interaction relationships based on 1399 paired observations from 105 warming studies. Results indicated that warming had a significant impact on various aspects of plant growth, including an increase in plant biomass (+16.55%), plant C:N ratio (+4.15%), leaf biomass (+16.78%), stem biomass (+23.65%), root biomass (+22.00%), litter C:N ratio (+9.54%) and soil C:N ratio (+5.64%). However, it also decreased stem C:P ratio (-23.34%), root C:P ratio (-12.88%), soil N:P ratio (-14.43%) and soil C:P ratio (-16.33%). The magnitude of warming was the primary drivers of changes of biomass and C:N:P stoichiometry. By establishing the general response curves of changes in biomass and C:N:P ratios with increasing temperature, we demonstrated that warming effect on plant, root, and litter biomass shifted from negative to positive, whereas that on leaf and stem biomass changed from positive to negative as temperature increased. Additionally, the effect of warming on root C:N ratio, root biomass, and microbial biomass N:P ratios shifted from positive to negative, whereas the effects on plant N:P, leaf N:P, leaf C:P, root N:P ratios, and microbial biomass C:N ratio changed from negative to positive with increasing temperature. Our research can help assess plant productivity and optimize ecosystem stoichiometry precisely in the context of global warming.
Assuntos
Ecossistema , Aquecimento Global , Humanos , Biomassa , Nitrogênio/análise , Plantas , Solo , CarbonoRESUMO
Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.
Assuntos
Ecossistema , Solo , Solo/química , Nitrogênio/análise , Biomassa , Plantas , Microbiologia do SoloRESUMO
Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.
Assuntos
Ecossistema , Microbiota , Carbono/metabolismo , Solo , Microbiologia do Solo , Mudança Climática , Nitrogênio/análiseRESUMO
The invasion of exotic plants in the river-lake ecotone has seriously affected the nutrient cycling processes in wetland soil. The South American species Alternanthera philoxeroides (Mart.) Griseb. is rapidly invading the river-lake ecotone in subtropical China, and has become the dominant species in the river-lake ecotone. However, there have been few studies on the effects of A. philoxeroides invasion on soil phosphorus (P) cycling and bioavailability in this ecotone. Here, we measured the bioavailable P fractions, physicochemical properties and nutrient content in the surface soils of the native plant (Zizania latifolia (Griseb.) Turcz and Nelumbo nucifera Gaertn.) communities and the adjacent invasive A. philoxeroides communities in three river-lake ecotones with different nutrient substrates in the subtropical Dongting Lake basin over a 3-year period to reveal the effects of A. philoxeroides invasion on the morphology and concentrations of soil bioavailable P. The principal coordinate analysis results showed that the A. philoxeroides invasion significantly altered the bioavailable P concentrations in the soil of native plant communities in the different river-lake ecotones, and this effect was not disturbed by the heterogeneity of the soil matrix. However, the effects of invasion into different native plant communities on the fractions of soil bioavailable P were different. Compared with native Z. latifolia and N. nucifera communities, A. philoxeroides invasion increased the concentration of inorganic P by 39.5% and 3.7%, respectively, and the concentration of organic P decreased by 32.7% and 31.9%, respectively. In addition, the invasion promoted P cycling and accumulation in the river-lake ecotone, which resulted in average decreases in the soil N:P and C:P ratios of 7.9% and 12.5%, respectively. These results highlight the impact of exotic plant invasions on nutrient cycling in wetland ecosystems in the river-lake ecotone, and this process may be detrimental to the late recovery of native plants.
Assuntos
Ecossistema , Fósforo , Solo , Disponibilidade Biológica , Lagos , Rios , Espécies Introduzidas , Plantas , ChinaRESUMO
The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American Alligator Alligator mississippiensis is an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond-like basins, but its role in influencing community structure and nutrient dynamics is less appreciated. We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of 'alligator ponds' compared to the surrounding phosphorus (P)-limited oligotrophic marsh. We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food-web resources and quantitative community analyses, and stoichiometric analyses on plants and animals. Our findings demonstrate that alligators act as ecosystem engineers and enhance food-web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom-up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats. Alligator-engineered habitats are ecologically important by providing nutrient-enriched 'hotspots' in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal-mediated bottom-up processes like ecosystem engineering.
Assuntos
Ecossistema , Áreas Alagadas , Animais , Cadeia Alimentar , Invertebrados , Plantas , Peixes , NutrientesRESUMO
The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.
Assuntos
Artrópodes , Oligoquetos , Pinus , Animais , Biomassa , Ecossistema , Florestas , SoloRESUMO
Harmful cyanobacterial blooms are an increasing threat to water quality. The interactions between two eco-physiological functional traits of cyanobacteria, diazotrophy (nitrogen (N)-fixation) and N-rich cyanotoxin synthesis, have never been examined in a stoichiometric explicit manner. We explored how a gradient of resource N:phosphorus (P) affects the biomass, N, P stoichiometry, light-harvesting pigments, and cylindrospermopsin production in a N-fixing cyanobacterium, Aphanizomenon. Low N:P Aphanizomenon cultures produced the same biomass as populations grown in high N:P cultures. The biomass accumulation determined by carbon, indicated low N:P Aphanizomenon cultures did not have a N-fixation growth tradeoff, in contrast to some other diazotrophs that maintain stoichiometric N homeostasis at the expense of growth. However, N-fixing Aphanizomenon populations produced less particulate cylindrospermopsin and had undetectable dissolved cylindrospermopsin compared to non-N-fixing populations. The pattern of low to high cyanotoxin cell quotas across an N:P gradient in the diazotrophic cylindrospermopsin producer is similar to the cyanotoxin cell quota response in non-diazotrophic cyanobacteria. We suggest that diazotrophic cyanobacteria may be characterized into two broad functional groups, the N-storage-strategists and the growth-strategists, which use N-fixation differently and may determine patterns of bloom magnitude and toxin production in nature.
RESUMO
Humans are increasing the environmental availability of historically limited nutrients, which may significantly influence organismal performance and behavior. Beneficial or stimulatory responses to increases in nitrogen availability (i.e., nitrogen limitation) are generally observed in plants but less consistently in animals. One possible explanation is that animal responses to nitrogen enrichment depend on how nitrogen intake is balanced with sodium, a micronutrient crucial for animals but not plants. We tested this idea in the cabbage white butterfly (Pieris rapae), a species that frequently inhabits nutrient-enriched plants in agricultural settings and roadside verges. We asked (1) whether anthropogenic increases in sodium influence how nitrogen enrichment affects butterfly performance and (2) whether individuals can adaptively adjust their foraging behavior to such effects. Larval nitrogen enrichment enhanced growth of cabbage white larvae under conditions of low but not high sodium availability. In contrast, larval nitrogen enrichment increased egg production of adult females only when individuals developed with high sodium availability. Ovipositing females preferred nitrogen-enriched leaves regardless of sodium availability, while larvae avoided feeding on nitrogen-enriched leaves elevated in sodium. Our results show that anthropogenic increases in sodium influence whether individuals benefit from and forage on nitrogen-enriched resources. Yet, different nitrogen-to-sodium ratios are required to optimize larval and adult performance. Whether increases in sodium catalyze or inhibit benefits of nitrogen enrichment may depend on how evolved nutrient requirements vary across stages of animal development.
Assuntos
Borboletas , Humanos , Animais , Feminino , Borboletas/fisiologia , Sódio , Nitrogênio , Larva , Folhas de Planta , PlantasRESUMO
The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has found broad but not uniform support in studies across diverse biota and habitats. We synthesise information on how and why the tripartite growth-RNA-P relationship predicted by the GRH may be uncoupled and outline paths for both theoretical and empirical work needed to broaden the working domain of the GRH. We found strong support for growth to RNA (r2 = 0.59) and RNA-P to P (r2 = 0.63) relationships across taxa, but growth to P relationships were relatively weaker (r2 = 0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation in non-RNA pools, inactive ribosomes, translation elongation rates and protein turnover rates), ecological (limitation by resources other than P), and evolutionary (adaptation to different nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the GRH and formalised mathematically to facilitate a predictive understanding of growth.