Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; 20(29): e2310338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412411

RESUMO

Zinc-ion batteries (ZIBs) are promising energy storage systems due to high energy density, low-cost, and abundant availability of zinc as a raw material. However, the greatest challenge in ZIBs research is lack of suitable cathode materials that can reversibly intercalate Zn2+ ions. 2D layered materials, especially MoS2-based, attract tremendous interest due to large surface area and ability to intercalate/deintercalate ions. Unfortunately, pristine MoS2 obtained by traditional protocols such as chemical exfoliation or hydrothermal/solvothermal methods exhibits limited electronic conductivity and poor chemical stability upon charge/discharge cycling. Here, a novel molecular strategy to boost the electrochemical performance of MoS2 cathode materials for aqueous ZIBs is reported. The use of dithiolated conjugated molecular pillars, that is, 4,4'-biphenyldithiols, enables to heal defects and crosslink the MoS2 nanosheets, yielding covalently bridged networks (MoS2-SH2) with improved ionic and electronic conductivity and electrochemical performance. In particular, MoS2-SH2 electrodes display high specific capacity of 271.3 mAh g-1 at 0.1 A g-1, high energy density of 279 Wh kg-1, and high power density of 12.3 kW kg-1. With its outstanding rate capability (capacity of 148.1 mAh g-1 at 10 A g-1) and stability (capacity of 179 mAh g-1 after 1000 cycles), MoS2-SH2 electrodes outperform other MoS2-based electrodes in ZIBs.

2.
Small ; 20(1): e2304806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649194

RESUMO

The sluggish kinetics in Ni-rich cathodes at subzero temperatures causes decreased specific capacity and poor rate capability, resulting in slow and unstable charge storage. So far, the driving force of this phenomenon remains a mystery. Herein, with the help of in-situ X-ray diffraction and time of flight secondary ion mass spectrometry techniques, the continuous accumulation of both the cathode electrolyte interphase (CEI) film formation and the incomplete structure evolution during cycling under subzero temperature are proposed. It is presented that excessively uniform and thick CEI film generated at subzero temperatures would block the diffusion of Li+ -ions, resulting in incomplete phase evolution and clear charge potential delay. The incomplete phase evolution throughout the Li+ -ion intercalation/de-intercalation processes would further cause low depth of discharge and poor electrochemical reversibility with low initial Coulombic efficiency, as well. In addition, the formation of the thick and uniform CEI film would also consume Li+ -ions during the charging process. This discovery highlights the effects of the CEI film formation behavior and incomplete phase evolution in restricting electrochemical kinetics under subzero temperatures, which the authors believe would promote the further application of the Ni-rich cathodes.

3.
Chemistry ; : e202402215, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083258

RESUMO

Electrochemical reactions are very complex and involve a variety of physicochemical processes. Accurate and systematic monitoring of intermediate process changes during the reaction is essential for understanding the mechanism of electrochemical reactions and is the basis for rational design of new electrochemical reactions. On-line electrochemical analysis based on mass spectrometry (MS) has become an important tool for studying electrochemical reactions. This technique is based on different ionization and sampling means and realizes on-line analysis of electrochemical reactions by establishing electrochemistry-MS (EC-MS) coupling devices. In particular, it provides key evidence for elucidating the reaction mechanism by capturing and identifying the reactive reaction intermediates. This review will categorize various EC-MS devices and the organic electrochemical reaction systems they study, highlighting the latest research progress in recent years. It will also analyze the properties of various devices and look forward to the future development of EC-MS.

4.
Small ; 19(8): e2206400, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504297

RESUMO

The fast electrochemical kinetics behavior and long cycling life have been the goals in developing anode materials for potassium ion batteries (PIBs). On account of high electron conductivity and theoretical capacity, transition metal selenides have been deemed as one of the promising anode materials for PIBs. Herein, a systematic structural manipulation strategy, pertaining to the confine of Fe3 Se4 particles by 3D graphene and the dual phosphorus (P) doping to the Fe3 Se4 /3DG (DP-Fe3 Se4 /3DG), has been proposed to fulfill the efficient potassium-ion (K-ion) evolution kinetics and thus boost the K-ion storage performance. The theoretical calculation results demonstrate that the well-designed dual P doping interface can effectively promote K-ion adsorption behavior and provide a low energy barrier for K-ion diffusion. The insertion-conversion and adsorption mechanism for multi potassium storage behavior in DP-Fe3 Se4 /3DG composite has been also deciphered by combining the in situ/ex situ X-ray diffraction and operando Raman spectra evidences. As expected, the DP-Fe3 Se4 /3DG anode exhibits superior rate capability (120.2 mA h g-1 at 10 A g-1 ) and outstanding cycling performance (157.9 mA h g-1 after 1000 cycles at 5 A g-1 ).

5.
Chemphyschem ; 24(16): e202300152, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309015

RESUMO

Electrochemical reactions mostly take place at a constant potential, but traditional DFT calculations operate at a neutral charge state. In order to really model experimental conditions, we developed a fixed-potential simulation framework via the iterated optimization and self-consistence of the required Fermi level. The B-doped graphene-based FeN4 sites for oxygen reduction reaction were chosen as the model to evaluate the accuracy of the fixed-potential simulation. The results demonstrate that *OH hydrogenation gets facile while O2 adsorption or hydrogenation becomes thermodynamically unfavorable due to the lower d-band center of Fe atoms in the constant potential state than the neutral charge state. The onset potential of ORR over B-doped FeN4 by performing potential-dependent simulations agree well with experimental findings. This work indicates that the fixed-potential simulation can provide a reasonable and accurate description on electrochemical reactions.

6.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373100

RESUMO

Carbon dioxide (CO2) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method. In addition, microbial electrosynthesis which utilizes an electroactive bio-film electrode as a catalyst can be considered as another option to reduce CO2. This review highlights the methods which can contribute to the increase in efficiency of carbon dioxide reduction (CO2R) processes through electrode structure with the introduction of various electrolytes such as ionic liquid, sulfate, and bicarbonate electrolytes, with the control of pH and with the control of the operating pressure and temperature of the electrolyzer. It also presents the research status, a fundamental understanding of carbon dioxide reduction reaction (CO2RR) mechanisms, the development of electrochemical CO2R technologies, and challenges and opportunities for future research.


Assuntos
Desequilíbrio Ácido-Base , Dióxido de Carbono , Humanos , Bicarbonatos , Mudança Climática , Planeta Terra
7.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806333

RESUMO

The focus of mainstream lithium-ion battery (LIB) research is on increasing the battery's capacity and performance; however, more effort should be invested in LIB safety for widespread use. One aspect of major concern for LIB cells is the gas generation phenomenon. Following conventional battery engineering practices with electrolyte additives, we examined the potential usage of electrolyte additives to address this specific issue and found a feasible candidate in divinyl sulfone (DVSF). We manufactured four identical battery cells and employed an electrolyte mixture with four different DVSF concentrations (0%, 0.5%, 1.0%, and 2.0%). By measuring the generated gas volume from each battery cell, we demonstrated the potential of DVSF additives as an effective approach for reducing the gas generation in LIB cells. We found that a DVSF concentration of only 1% was necessary to reduce the gas generation by approximately 50% while simultaneously experiencing a negligible impact on the cycle life. To better understand this effect on a molecular level, we examined possible electrochemical reactions through ab initio molecular dynamics (AIMD) based on the density functional theory (DFT). From the electrolyte mixture's exposure to either an electrochemically reductive or an oxidative environment, we determined the reaction pathways for the generation of CO2 gas and the mechanism by which DVSF additives effectively blocked the gas's generation. The key reaction was merging DVSF with cyclic carbonates, such as FEC. Therefore, we concluded that DVSF additives could offer a relatively simplistic and effective approach for controlling the gas generation in lithium-ion batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Carbonatos/química , Eletrólitos/química , Gases , Lítio/química , Sulfonas
8.
Molecules ; 26(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379397

RESUMO

Popular and readily available alkenes and alkynes are good substrates for the preparation of functionalized molecules through radical and/or ionic addition reactions. Difunctionalization is a topic of current interest due to its high efficiency, substrate versatility, and operational simplicity. Presented in this article are radical addition followed by oxidation and nucleophilic addition reactions for difunctionalization of alkenes or alkynes. The difunctionalization could be accomplished through 1,2-addition (vicinal) and 1,n-addition (distal or remote) if H-atom or group-transfer is involved in the reaction process. A wide range of moieties, such as alkyl (R), perfluoroalkyl (Rf), aryl (Ar), hydroxy (OH), alkoxy (OR), acetatic (O2CR), halogenic (X), amino (NR2), azido (N3), cyano (CN), as well as sulfur- and phosphorous-containing groups can be incorporated through the difunctionalization reactions. Radicals generated from peroxides or single electron transfer (SET) agents, under photoredox or electrochemical reactions are employed for the reactions.


Assuntos
Alcenos/química , Alcinos/química , Radicais Livres/química , Oxirredução , Peróxidos/química
9.
Sensors (Basel) ; 18(6)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914117

RESUMO

A glucose biosensor was utilized as a platform for the time-temperature integrator (TTI), a device for intelligent food packaging. The TTI system is composed of glucose oxidase, glucose, a pH indicator, and a three-electrode potentiostat, which produces an electrical signal as well as color development. The reaction kinetics of these response variables were analyzed under isothermal conditions. The reaction rates of the electrical current and color changes were 0.0360 ± 0.0020 (95% confidence limit), 0.0566 ± 0.0026, 0.0716 ± 0.0024, 0.1073 ± 0.0028 µA/min, and 0.0187 ± 0.0005, 0.0293 ± 0.0018, 0.0363 ± 0.0012, 0.0540 ± 0.0019 1/min, at 5, 15, 25, and 35 °C, respectively. The Arrhenius activation energy of the current reaction (Eacurrent) was 25.0 ± 1.6 kJ/mol and the Eacolor of the color reactions was 24.2 ± 0.6 kJ/mol. The similarity of these Ea shows agreement in the prediction of food qualities between the electrical signal and color development. Consequently, the function of the new time-temperature integrator system could be extended to that of a biosensor compatible with any electrical utilization equipment.


Assuntos
Técnicas Biossensoriais/métodos , Embalagem de Alimentos/métodos , Glucose/análise , Temperatura , Técnicas Biossensoriais/instrumentação , Eletrodos , Alimentos/normas , Embalagem de Alimentos/instrumentação , Glucose/metabolismo , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Fatores de Tempo
10.
Angew Chem Int Ed Engl ; 57(39): 12716-12720, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30094899

RESUMO

A covalent organic framework integrating naphthalenediimide and triphenylamine units (NT-COF) is presented. Two-dimensional porous nanosheets are packed with a high specific surface area of 1276 m2 g-1 . Photo/electrochemical measurements reveal the ultrahigh efficient intramolecular charge transfer from the TPA to the NDI and the highly reversible electrochemical reaction in NT-COF. There is a synergetic effect in NT-COF between the reversible electrochemical reaction and intramolecular charge transfer with enhanced solar energy efficiency and an accelerated electrochemical reaction. This synergetic mechanism provides the key basis for direct solar-to-electrochemical energy conversion/storage. With the NT-COF as the cathode materials, a solar Li-ion battery is realized with decreased charge voltage (by 0.5 V), increased discharge voltage (by 0.5 V), and extra 38.7 % battery efficiency.

11.
Nano Lett ; 15(5): 3431-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25928894

RESUMO

Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable, and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with subnanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs pore size model. Furthermore, DNA translocations can be detected in situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.

12.
Sci Total Environ ; 927: 172300, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593873

RESUMO

The decomposition of ammonia-N to environmental-friendly N2 remains a fundamental problem for water treatment. We proposed a way to selectively and efficiently oxidize ammonia to N2 through an integrated photoeletrocatalysis­chlorine reactions (PECCl) system based on a bifunctional TiO2 nanotube photoanode. The ·OH and HClO can be simultaneously generated on the TiO2 nanotube photoanode in this system, which can in situ form ClO· for efficient ammonia removal. Compared with electrochemical­chlorine (EC-Cl), photocatalysis­chlorine (PC-Cl) and photoelectrocatalysis (PEC) systems, the PEC-Cl system exhibited much higher electrocatalytic activity due to the synergetic effect of photoelectrocatalyst and electrocatalyst in bifunctional TiO2 nanotube electrode. The removal efficiency of ammonia-N and total-N reached 100.0 % and 93.3 % at 0.3 V (vs Ag/AgCl) in the PEC-Cl system. Moreover, the system was efficient under various pH conditions. The reactions between ClO-/ClO· and the N-containing intermediates contributed to the high performance of the system, which expanded the reactions from the electrode surface to the electrolyte. Furthermore, radical scavenging and free chlorine determination experiments confirmed that ClO· and free chlorine were the main active species that enabled the ammonia oxidation. This study presents new understanding on the role of active species for ammonia removal in wastewater.

13.
ACS Appl Mater Interfaces ; 16(10): 12844-12852, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416069

RESUMO

High-energy radiation detectors with a good imaging resolution, fast response, and high sensitivity are desired to operate at a high electric field. However, strong ion migration triggered by electrochemical reactions at the interface between a high-potential electrode and an organic-inorganic hybrid perovskite limits the stability of radiation detectors under a high electric field. Herein, we demonstrate that such ion migration could be effectively suppressed in devices with a Ti cathode, even at a high electric field of 50 V mm-1, through time-of-flight secondary-ion mass spectrometry. X-ray photoelectron spectroscopy illustrates that Ti-N bonds formed at the interface of MAPbBr3 perovskite single crystals/Ti electrode effectively inhibit the electrochemical reaction in organic-inorganic hybrid perovskite devices and ultimately improve the operating stability under a high electric field. The device with a Ti electrode reaches a high sensitivity of 96 ± 1 mC Gyair-1 cm-2 and a low detection limit of 2.8 ± 0.3 nGy s-1 under hard X-ray energy.

14.
ACS Appl Mater Interfaces ; 16(28): 36289-36294, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954646

RESUMO

Na-O2 batteries have emerged as promising candidates due to their high theoretical energy density (1,601 Wh kg-1), the potential for high energy storage efficiency, and the abundance of sodium in the earth's crust. Considering the safety issue, quasi-solid-state composite polymer electrolytes are among the promising solid-state electrolyte candidates. Their higher mechanical toughness provides superior resistance to dendritic penetration compared with traditional liquid electrolytes. The flexibility of the composite polymer electrolyte matrix allows it to conform to various battery configurations and considerably reduces safety concerns related to the combustion risks associated with conventional liquid electrolytes. In this study, we employed poly(ethylene oxide) (PEO) and sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as the polymer matrix and sodium ion-conducting agent, respectively. We incorporated nanosized NZSP (25 wt %) to create the composite polymer electrolyte membrane. This CPE design facilitates ion conduction pathways through both sodium salt and NZSP. By utilizing a liquid electrolyte infiltration method, we successfully enhanced its ionic conductivity, achieving an ionic conductivity of 10-4 S cm-1 at room temperature.

15.
Ultrason Sonochem ; 92: 106273, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36603463

RESUMO

A series of porous S-doped carbon nitride ribbons (PSCN) were prepared by one-pot hydrothermal and sonochemical synthesis techniques. The morphologies and nanostructures of the catalysts were characterized by SEM, XRD and IR, which confirmed the pristine graphitic structures of carbon nitrides retained in the products. Due to sonication treatment, PSCN has porous structures in the thin ribbon and larger specific surface areas (PSCN 43.5 m2/g, SCN 26.6 m2/g and GCN 6.5 m2/g). XPS and elemental mappings verified that sulfur atoms were successfully introduced into the carbon nitride framework. Diffuse reflectance spectroscopy (DRS) results showed S-doping in the carbon nitride reduced the bandgap energy and enhanced their capability of the utilization of visible light, which contributed to higher photo-generated current. Photoluminescence (PL) analysis indicates the recombination of photogenerated carriers was suppressed in PSCN. Moreover, the photocatalytic performance showed that S-doping and porous and thin ribbon nanostructures may effectively boost the CO2 reduction rate (to as much as 5.8 times of GCN) when illuminated byvisible light (>420 nm) without the need of sacrificial materials. The preliminary mechanisms of the formation of PSCN and its applications in photocatalytic CO2 reduction are proposed. It highlights the potential of the current technique to produce effective, nonmetal-doped carbon nitride photocatalysts.

16.
Anal Sci ; 39(3): 369-374, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36576651

RESUMO

Nitroxyl radicals are known to electrochemically oxidize thiols as well as alcohols and amines. In this study, a preliminary investigation of the electrochemical reaction of thiols with 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO), 2-azaadamantane N-oxyl (AZADO), and nortropine N-oxyl (NNO), which are highly active due to their bicyclo structures, for use in electrochemical analysis was performed and the results were compared with those for a typical nitroxyl radical compound, 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO). Mercaptopropane sulfonic acid (MPS) was used as a model compound to investigate the electrochemical response in aqueous solution. In addition, electrochemical detection of glutathione, a biological thiol molecule, was performed.

17.
J Am Soc Mass Spectrom ; 34(4): 728-736, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815710

RESUMO

A bipolar ESI source is developed to generate a simultaneous emission of charged liquid jets of opposite polarity from an electrodeless sprayer. The sprayer consists of two emitters, and the electrosprays are initiated by applying a high potential difference (HV) across the counter electrodes facing each emitter. The sprayer and the liquid delivery system are made of all insulators without metal components, thus enabling the total elimination of electrochemical reactions taking place at the liquid-electrode interface in the typical electrosprayer. The bipolar electrospray has been implemented using an online configuration that uses a syringe pump for flow rate regulation and an offline configuration that relies on HV for adjusting the flow rate. The voltage-current and flow rate-current relationships of bipolar electrospray were found to be similar to the standard electrospray. The application of bipolar ESI to the mass spectrometry of protein, peptide, and metallocene without electrochemically induced oxidation/reduction is demonstrated.

18.
Sci Total Environ ; 886: 163891, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142015

RESUMO

Biochar (BC) has received much attention as a promising adsorbent that can be exploited to remove heavy metals in domestic and wastewater. The adsorption capacity of BC is, however, relatively low compared to that of conventional adsorbents, and its performance is inversely proportional to its stability. Various chemical and physical methods have been tried to address these limitations, but BC activation still generates too much acidic or alkaline wastewater. Here we propose a novel electrochemical method and compare its lead (Pb) adsorption capacity to that of acid- and alkaline-based approaches. We found that electrochemical activation significantly increased the number of hydroxyl and carboxylic groups on the BC surface, which led to an increase in Pb absorption from 27 % (pristine BC) to 100 % because the oxygenated-functional groups contributed to the adsorption of Pb. Pb capacity was 1.36, 2.64, 3.31, and 5.00 mg g-1, corresponding to pristine, acidic, alkaline, and electrochemical activation, respectively. The Pb absorption capacity of electrochemically activated BC was also higher than that of acid- and alkali-activated BC, which we attribute to the observed increases in oxygen ratio and surface area. Moreover, the adsorption rate of BC after electrochemical activation was 190 times faster and its capacity was 2.4 times higher than that of pristine BC. These findings show that the electrochemical activation of BC results in greater adsorption capacity than conventional methods.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Café , Chumbo , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal , Cinética
19.
Water Res ; 231: 119597, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702021

RESUMO

Iron release from pipe scale is an important reason for water quality deterioration in drinking water distribution systems (DWDS) globally. Disruption of pipe scale, release and transformation of iron compounds are hot topics in the field of water supply. The aim of this study is to determine whether and how ferric components in pipe scale be reduced under anoxic condition. In this study, new investigation approaches were applied, which include simplifying the complex scale into electrode pairs, developing novel simulating reactors and conducting tailored electrochemical assays. A galvanic cell reactor with anode of metallic iron (Fe0) and various cathode made of certain iron oxide (FeOx) was firstly developed to simulate the complex niche and components of pipe scale. Electrochemical methods were used to study the reduction characteristics of scale. The results proved that reduction of iron oxide scale did occur under anoxic condition. Electromotive forces between various electrodes match the Nernst Equation quite well. As main components in pipe scale, lepidocrocite (γ-FeOOH) was found to be the most reducible iron oxide but at low rate, while goethite (α-FeOOH) has weak reducibility but can be quickly reduced. As a result of electrochemical reactions, goethite in pipe scale was transformed into magnetite (Fe3O4). By these means, electrochemical reaction mechanisms of pipe scale disruption were revealed, which is helpful to restrain pipe corrosion and water deterioration in DWDS.


Assuntos
Água Potável , Compostos de Ferro , Ferro/química , Abastecimento de Água , Corrosão
20.
ACS Appl Mater Interfaces ; 15(37): 44033-44042, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37694918

RESUMO

Three organic conjugated small molecules, DTA-DTPZ, Cz-DTPZ, and DTA-me-DTPZ comprising an antiaromatic 5,10-ditolylphenazine (DTPZ) core and electron-donating peripheral substituents with high HOMOs (-4.2 to -4.7 eV) and multiple reversible oxidative potentials are reported. The corresponding films sandwiched between two electrodes show unipolar and switchable hysteresis current-voltage (I-V) characteristics upon voltage sweeping, revealing the prominent features of nonvolatile memristor behaviors. The numerical simulation of the I-V curves suggests that the carriers generated by the oxidized molecules lead to the increment of conductance. However, the accumulated carriers tend to deteriorate the device endurance. The electroactive sites are fully blocked in the dimethylated molecule DTA-me-DTPZ, preventing the irreversible electrochemical reaction, thereby boosting the endurance of the memristor device over 300 cycles. Despite the considerable improvement in endurance, the decrement of on/off ratio from 105 to 101 after 250 cycles suggests that the excessive charge carriers (radical cations) remains a problem. Thus, a new strategy of doping an electron-deficient material, CN-T2T, into the unipolar active layer was introduced to further improve the device stability. The device containing DTA-me-DTPZ:CNT2T (1:1) blend as the active layer retained the endurance and on/off ratio (∼104) upon sweeping 300 cycles. The molecular designs and doping strategy demonstrate effective approaches toward more stable metal-free organic conjugated small-molecule memristors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa