Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.375
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366593

RESUMO

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Assuntos
Gorduras na Dieta , Ferroptose , Fosfolipídeos , Ácidos Graxos , Fosfatidilcolinas , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio , Gorduras na Dieta/metabolismo
2.
Cell ; 187(3): 659-675.e18, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215760

RESUMO

The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.


Assuntos
Caenorhabditis elegans , Complexo I de Transporte de Elétrons , Hipóxia , Animais , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxigênio/metabolismo
3.
Cell ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39395414

RESUMO

In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain. Yet, the structural basis of respiratory complex adaptation upon cold exposure remains elusive. Herein, we combined thermoregulatory physiology and cryoelectron microscopy (cryo-EM) to study endogenous respiratory supercomplexes from mice exposed to different temperatures. A cold-induced conformation of CI:III2 (termed type 2) supercomplex was identified with a ∼25° rotation of CIII2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting catalytic states that favor electron transfer. Large-scale supercomplex simulations in mitochondrial membranes reveal how lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations, and biochemical analyses unveil the thermoregulatory mechanisms and dynamics of increased respiratory capacity in brown fat at the structural and energetic level.

4.
Annu Rev Cell Dev Biol ; 40(1): 169-193, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38950450

RESUMO

Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.


Assuntos
Evolução Biológica , Tilacoides , Tilacoides/metabolismo , Fotossíntese , Plantas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/genética
5.
Cell ; 177(2): 361-369.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951668

RESUMO

Long-range (>10 µm) transport of electrons along networks of Geobacter sulfurreducens protein filaments, known as microbial nanowires, has been invoked to explain a wide range of globally important redox phenomena. These nanowires were previously thought to be type IV pili composed of PilA protein. Here, we report a 3.7 Å resolution cryoelectron microscopy structure, which surprisingly reveals that, rather than PilA, G. sulfurreducens nanowires are assembled by micrometer-long polymerization of the hexaheme cytochrome OmcS, with hemes packed within ∼3.5-6 Å of each other. The inter-subunit interfaces show unique structural elements such as inter-subunit parallel-stacked hemes and axial coordination of heme by histidines from neighboring subunits. Wild-type OmcS filaments show 100-fold greater conductivity than other filaments from a ΔomcS strain, highlighting the importance of OmcS to conductivity in these nanowires. This structure explains the remarkable capacity of soil bacteria to transport electrons to remote electron acceptors for respiration and energy sharing.


Assuntos
Transporte de Elétrons/fisiologia , Geobacter/metabolismo , Heme/metabolismo , Biofilmes , Condutividade Elétrica , Elétrons , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Nanofios , Oxirredução
6.
Cell ; 167(2): 457-470.e13, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667687

RESUMO

Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Mitocôndrias/enzimologia , Succinato Desidrogenase/metabolismo , Ácido Succínico/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Ciclo do Ácido Cítrico , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Malonatos/farmacologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Succinato Desidrogenase/genética , Transcriptoma
7.
Mol Cell ; 83(21): 3904-3920.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37879334

RESUMO

Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.


Assuntos
Metabolismo Energético , Ácido Láctico , Ácido Láctico/metabolismo , Transporte de Elétrons , Fosforilação Oxidativa , Glicólise/fisiologia , Trifosfato de Adenosina/metabolismo
8.
Immunity ; 54(1): 53-67.e7, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058782

RESUMO

Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance.


Assuntos
Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Fígado/imunologia , Pulmão/imunologia , Mitocôndrias/metabolismo , Sepse/tratamento farmacológico , Tetraciclina/uso terapêutico , Animais , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Transporte de Elétrons , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Mol Cell ; 82(18): 3321-3332, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961309

RESUMO

Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response.


Assuntos
Mitocôndrias , Neoplasias , Apoptose , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Estresse Oxidativo , Respiração , Transdução de Sinais
10.
Annu Rev Microbiol ; 77: 541-560, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406344

RESUMO

Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with Toxoplasma having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.


Assuntos
Malária , Toxoplasma , Animais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Toxoplasma/metabolismo , Evolução Biológica
11.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38369735

RESUMO

Malrotation of the intestine is a prevalent birth anomaly, the etiology of which remains poorly understood. Here, we show that late-stage exposure of Xenopus embryos to atrazine, a widely used herbicide that targets electron transport chain (ETC) reactions, elicits intestinal malrotation at high frequency. Interestingly, atrazine specifically inhibits the cellular morphogenetic events required for gut tube elongation, including cell rearrangement, differentiation and proliferation; insufficient gut lengthening consequently reorients the direction of intestine rotation. Transcriptome analyses of atrazine-exposed intestines reveal misexpression of genes associated with glycolysis and oxidative stress, and metabolomics shows that atrazine depletes key glycolytic and tricarboxylic acid cycle metabolites. Moreover, cellular bioenergetics assays indicate that atrazine blocks a crucial developmental transition from glycolytic ATP production toward oxidative phosphorylation. Atrazine-induced defects are phenocopied by rotenone, a known ETC Complex I inhibitor, accompanied by elevated reactive oxygen species, and rescued by antioxidant supplementation, suggesting that malrotation may be at least partly attributable to redox imbalance. These studies reveal roles for metabolism in gut morphogenesis and implicate defective gut tube elongation and/or metabolic perturbations in the etiology of intestinal malrotation.


Assuntos
Atrazina , Herbicidas , Rotação , Herbicidas/toxicidade , Oxirredução , Perfilação da Expressão Gênica
12.
Trends Immunol ; 45(4): 259-273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503657

RESUMO

The electron transport chain (ETC) couples electron transfer with proton pumping to generate ATP and it also regulates particular innate and adaptive immune cell function. While NLRP3 inflammasome activation was initially linked to reactive oxygen species (ROS) produced from Complexes I and III, recent research suggests that an intact ETC fueling ATP is needed. Complex II may be responsible for Th1 cell proliferation and in some cases, effector cytokine production. Complex III is required for regulatory T (Treg) cell function, while oxidative phosphorylation (OXPHOS) and Complexes I, IV, and V sustain proliferation and antibody production in B lymphocytes, with OXPHOS also being required for B regulatory (Breg) cell function. Despite challenges, the ETC shows therapeutic targeting potential for immune-related diseases and in immuno-oncology.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Humanos , Mitocôndrias/metabolismo , Transporte de Elétrons , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(34): e2403000121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136982

RESUMO

Electron transport in complex fluids, biology, and soft matter is a valuable characteristic in processes ranging from redox reactions to electrochemical energy storage. These processes often employ conductor-insulator composites in which electron transport properties are fundamentally linked to the microstructure and dynamics of the conductive phase. While microstructure and dynamics are well recognized as key determinants of the electrical properties, a unified description of their effect has yet to be determined, especially under flowing conditions. In this work, the conductivity and shear viscosity are measured for conductive colloidal suspensions to build a unified description by exploiting both recent quantification of the effect of flow-induced dynamics on electron transport and well-established relationships between electrical properties, microstructure, and flow. These model suspensions consist of conductive carbon black (CB) particles dispersed in fluids of varying viscosities and dielectric constants. In a stable, well-characterized shear rate regime where all suspensions undergo self-similar agglomerate breakup, competing relationships between conductivity and shear rate were observed. To account for the role of variable agglomerate size, equivalent microstructural states were identified using a dimensionless fluid Mason number, [Formula: see text], which allowed for isolation of the role of dynamics on the flow-induced electron transport rate. At equivalent microstructural states, shear-enhanced particle-particle collisions are found to dominate the electron transport rate. This work rationalizes seemingly contradictory experimental observations in literature concerning the shear-dependent electrical properties of CB suspensions and can be extended to other flowing composite systems.

14.
Proc Natl Acad Sci U S A ; 121(12): e2319473121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478695

RESUMO

Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H2S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H2S preconditioning increases P50(O2), the O2 pressure for half-maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24 to 48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H2S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury and/or prolonging the shelf life of biologics like platelets.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfetos , Oxirredução , Mamíferos/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(32): e2403324121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39052850

RESUMO

Proteins play a key role in biological electron transport, but the structure-function relationships governing the electronic properties of peptides are not fully understood. Despite recent progress, understanding the link between peptide conformational flexibility, hierarchical structures, and electron transport pathways has been challenging. Here, we use single-molecule experiments, molecular dynamics (MD) simulations, nonequilibrium Green's function-density functional theory (NEGF-DFT), and unsupervised machine learning to understand the role of secondary structure on electron transport in peptides. Our results reveal a two-state molecular conductance behavior for peptides across several different amino acid sequences. MD simulations and Gaussian mixture modeling are used to show that this two-state molecular conductance behavior arises due to the conformational flexibility of peptide backbones, with a high-conductance state arising due to a more defined secondary structure (beta turn or 310 helices) and a low-conductance state occurring for extended peptide structures. These results highlight the importance of helical conformations on electron transport in peptides. Conformer selection for the peptide structures is rationalized using principal component analysis of intramolecular hydrogen bonding distances along peptide backbones. Molecular conformations from MD simulations are used to model charge transport in NEGF-DFT calculations, and the results are in reasonable qualitative agreement with experiments. Projected density of states calculations and molecular orbital visualizations are further used to understand the role of amino acid side chains on transport. Overall, our results show that secondary structure plays a key role in electron transport in peptides, which provides broad avenues for understanding the electronic properties of proteins.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Estrutura Secundária de Proteína , Transporte de Elétrons , Peptídeos/química , Peptídeos/metabolismo , Ligação de Hidrogênio
16.
Trends Biochem Sci ; 47(8): 689-698, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35397924

RESUMO

The electron transport chain (ETC) is a major currency converter that exchanges the chemical energy of fuel oxidation to proton motive force and, subsequently, ATP generation, using O2 as a terminal electron acceptor. Discussed herein, two new studies reveal that the mammalian ETC is forked. Hypoxia or H2S exposure promotes the use of fumarate as an alternate terminal electron acceptor. The fumarate/succinate and CoQH2/CoQ redox couples are nearly iso-potential, revealing that complex II is poised for facile reverse electron transfer, which is sensitive to CoQH2 and fumarate concentrations. The gas regulators, H2S and •NO, modulate O2 affinity and/or inhibit the electron transfer rate at complex IV. Their induction under hypoxia suggests a mechanism for how traffic at the ETC fork can be regulated.


Assuntos
Elétrons , Fumaratos , Animais , Transporte de Elétrons , Hipóxia , Mamíferos , Oxirredução
17.
EMBO Rep ; 25(4): 2015-2044, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480845

RESUMO

Naive human embryonic stem cells (hESCs) that resemble the pre-implantation epiblasts are fueled by a combination of aerobic glycolysis and oxidative phosphorylation, but their mitochondrial regulators are poorly understood. Here we report that, proline dehydrogenase (PRODH), a mitochondria-localized proline metabolism enzyme, is dramatically upregulated in naive hESCs compared to their primed counterparts. The upregulation of PRODH is induced by a reduction in c-Myc expression that is dependent on PD0325901, a MEK inhibitor routinely present in naive hESC culture media. PRODH knockdown in naive hESCs significantly promoted mitochondrial oxidative phosphorylation (mtOXPHOS) and reactive oxygen species (ROS) production that triggered autophagy, DNA damage, and apoptosis. Remarkably, MitoQ, a mitochondria-targeted antioxidant, effectively restored the pluripotency and proliferation of PRODH-knockdown naive hESCs, indicating that PRODH maintains naive pluripotency by preventing excessive ROS production. Concomitantly, PRODH knockdown significantly slowed down the proteolytic degradation of multiple key mitochondrial electron transport chain complex proteins. Thus, we revealed a crucial role of PRODH in limiting mtOXPHOS and ROS production, and thereby safeguarding naive pluripotency of hESCs.


Assuntos
Fosforilação Oxidativa , Prolina Oxidase , Humanos , Espécies Reativas de Oxigênio/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Mitocôndrias/metabolismo , Apoptose
18.
Mol Cell ; 71(4): 567-580.e4, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118679

RESUMO

The electron transport chain (ETC) is an important participant in cellular energy conversion, but its biogenesis presents the cell with numerous challenges. To address these complexities, the cell utilizes ETC assembly factors, which include the LYR protein family. Each member of this family interacts with the mitochondrial acyl carrier protein (ACP), the scaffold protein upon which the mitochondrial fatty acid synthesis (mtFAS) pathway builds fatty acyl chains from acetyl-CoA. We demonstrate that the acylated form of ACP is an acetyl-CoA-dependent allosteric activator of the LYR protein family used to stimulate ETC biogenesis. By tuning ETC assembly to the abundance of acetyl-CoA, which is the major fuel of the TCA cycle and ETC, this system could provide an elegant mechanism for coordinating the assembly of ETC complexes with one another and with substrate availability.


Assuntos
Acetilcoenzima A/metabolismo , Proteína de Transporte de Acila/metabolismo , Mitocôndrias/enzimologia , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/enzimologia , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Acilação , Regulação Alostérica , Sítios de Ligação , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/genética , Ácidos Graxos/biossíntese , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(40): e2307093120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751552

RESUMO

Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.


Assuntos
Citocromos c , Pseudomonas aeruginosa , Transporte de Elétrons , Transporte Biológico , Antibacterianos
20.
Proc Natl Acad Sci U S A ; 120(19): e2301047120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126705

RESUMO

The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Citocromos c , Transporte de Elétrons , Eucariotos , Citocromos c1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa