Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Biol Chem ; : 107699, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173949

RESUMO

Marine microalgae are the primary producers of ω3 polyunsaturated fatty acids (PUFAs), such as octadecapentaenoic acid (OPA, 18:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for food chains. However, the biosynthetic mechanisms of these PUFAs in the algae remain elusive. To study how these fatty acids are synthesized in microalgae, a series of radiolabeled precursors were used to trace the biosynthetic process of PUFAs in Emiliania huxleyi. Feeding the alga with 14C-labeled acetic acid in a time course showed that OPA was solely found in glycoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) synthesized plastidically by sequential desaturations while DHA was exclusively found in phospholipids synthesized extraplastidically. Feeding the alga with 14C-labeled α-linolenic acid (ALA), linoleic acid (LA) and oleic acid (OA) showed that DHA was synthesized extraplastidically from fed ALA and LA, but not from OA, implying that the aerobic pathway of DHA biosynthesis is incomplete with missing a Δ12 desaturation step. The in vitro enzymatic assays with 14C-labeled malonyl-CoA showed that DHA was synthesized from acetic acid by a PUFA synthase. These results provide the first and conclusive biochemistry evidence that OPA is synthesized by a plastidic aerobic pathway through sequential desaturations with the last step of Δ3 desaturation, while DHA is synthesized by an extraplastidic anaerobic pathway catalyzed by a PUFA synthase in the microalga.

2.
Virol J ; 21(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172919

RESUMO

BACKGROUND: The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD: Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS: We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS: This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Haptófitas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Haptófitas/genética , Vírion , Reação em Cadeia da Polimerase
3.
Mol Ecol ; 32(23): 6507-6522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36541038

RESUMO

Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. The structure and selection of prokaryotic communities associated with the most abundant coccolithophore and bloom-forming species, Emiliania huxleyi, are still poorly known. In this study, we assessed the diversity of bacterial communities associated with an E. huxleyi bloom in the Celtic Sea (Eastern North Atlantic), exposed axenic E. huxleyi cultures to prokaryotic communities derived from bloom and non-bloom conditions, and followed the dynamics of their microbiome composition over one year. Bloom-associated prokaryotic communities were dominated by SAR11, Marine group II Euryarchaeota and Rhodobacterales and contained substantial proportions of known indicators of phytoplankton bloom demises such as Flavobacteriaceae and Pseudoalteromonadaceae. The taxonomic richness of bacteria derived from natural communities associated with axenic E. huxleyi rapidly shifted and then stabilized over time. The succession of microorganisms recruited from the environment was consistently dependent on the composition of the initial bacterioplankton community. Phycosphere-associated communities derived from the E. huxleyi bloom were highly similar to one another, suggesting deterministic processes, whereas cultures from non-bloom conditions show an effect of stochasticity. Overall, this work sheds new light on the importance of the initial inoculum composition in microbiome recruitment and elucidates the temporal dynamics of its composition and long-term stability.


Assuntos
Haptófitas , Microbiota , Haptófitas/genética , Fitoplâncton/genética , Organismos Aquáticos , Bactérias , Microbiota/genética
4.
Microb Ecol ; 86(1): 127-143, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35624343

RESUMO

The coccolithophore Emiliania huxleyi shows a variety of responses to ocean acidification (OA) and to high-CO2 concentrations, but there is still controversy on differentiating between these two factors when using different strains and culture methods. A heavily calcified type A strain isolated from the Norwegian Sea was selected and batch cultured in order to understand whether acclimation to OA was mediated mainly by CO2 or H+, and how it impacted cell growth performance, calcification, and physiological stress management. Emiliania huxleyi responded differently to each acidification method. CO2-enriched aeration (1200 µatm, pH 7.62) induced a negative effect on the cells when compared to acidification caused by decreasing pH alone (pH 7.60). The growth rates of the coccolithophore were more negatively affected by high pCO2 than by low pH without CO2 enrichment with respect to the control (400 µatm, pH 8.1). High CO2 also affected cell viability and promoted the accumulation of reactive oxygen species (ROS), which was not observed under low pH. This suggests a possible metabolic imbalance induced by high CO2 alone. In contrast, the affinity for carbon uptake was negatively affected by both low pH and high CO2. Photochemistry was only marginally affected by either acidification method when analysed by PAM fluorometry. The POC and PIC cellular quotas and the PIC:POC ratio shifted along the different phases of the cultures; consequently, calcification did not follow the same pattern observed in cell stress and growth performance. Specifically, acidification by HCl addition caused a higher proportion of severely deformed coccoliths, than CO2 enrichment. These results highlight the capacity of CO2 rather than acidification itself to generate metabolic stress, not reducing calcification.


Assuntos
Haptófitas , Água do Mar , Haptófitas/fisiologia , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Fotossíntese
5.
Appl Environ Microbiol ; 88(2): e0141821, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757817

RESUMO

Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi, which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo-assembled, near-complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like data set, termed "synthetic genome" (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly identified genes contribute to our understanding of E. huxleyi genome diversification and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. IMPORTANCE Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here, we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is cocultivated with bacteria. By constructing a "synthetic genome," we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.


Assuntos
Haptófitas , Genômica , Haptófitas/genética , Haptófitas/metabolismo , Anotação de Sequência Molecular , Oceanos e Mares , Transcriptoma
6.
Glob Chang Biol ; 28(4): 1560-1568, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808010

RESUMO

Rising ocean temperatures will alter the diversity of marine phytoplankton communities, likely leading to modifications in food-web and biogeochemical dynamics. Here we focus on coccolithophores, a prominent group of calcifying phytoplankton that plays a central role in the global carbon cycle. Using both new (2017-2020) and historical (1975-1976) data from the northern Red Sea, we found that during 'mild summers', the most common coccolithophores - Emiliania huxleyi and Gephyrocapsa ericsonii - co-exist at similar densities. Both species then particularly flourish during subsequent winter periods where nutrient availability is higher due to convective mixing. However, during 'hot summers', which have become progressively the norm over the last decades with average surface temperatures exceeding 27°C for long time-periods, G. ericsonii density markedly declined. Moreover, G. ericsonii remains at low background levels even during winter mixing periods, while E. huxleyi succession and development during winter appears unchanged. Further incubation assays using native assemblages confirmed that G. ericsonii's growth over 27°C is significantly reduced relative to E. huxleyi. Additional factors likely contribute to impair G. ericsonii populations at sea, but temperature is a key factor. Our results illustrate the divergent impact of ongoing ocean warming in tropical phytoplankton species.


Assuntos
Ecossistema , Haptófitas , Fitoplâncton , Estações do Ano , Temperatura
7.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918234

RESUMO

Emiliania huxleyi is a cosmopolitan coccolithophore that plays an essential role in global carbon and sulfur cycling, and contributes to marine cloud formation and climate regulation. Previously, the proteomic profile of Emiliania huxleyi was investigated using a three-dimensional separation strategy combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current study reuses the MS/MS spectra obtained, for the global discovery of post-translational modifications (PTMs) in this species without specific enrichment methods. Twenty-five different PTM types were examined using Trans-Proteomic Pipeline (Comet and PeptideProphet). Overall, 13,483 PTMs were identified in 7421 proteins. Methylation was the most frequent PTM with more than 2800 modified sites, and lysine was the most frequently modified amino acid with more than 4000 PTMs. The number of proteins identified increased by 22.5% to 18,780 after performing the PTM search. Compared to intact peptides, the intensities of some modified peptides were superior or equivalent. The intensities of some proteins increased dramatically after the PTM search. Gene ontology analysis revealed that protein persulfidation was related to photosynthesis in Emiliania huxleyi. Additionally, various membrane proteins were found to be phosphorylated. Thus, our global PTM discovery platform provides an overview of PTMs in the species and prompts further studies to uncover their biological functions. The combination of a three-dimensional separation method with global PTM search is a promising approach for the identification and discovery of PTMs in other species.


Assuntos
Haptófitas/química , Processamento de Proteína Pós-Traducional , Ontologia Genética , Metilação , Peptídeos/química , Fosforilação , Proteínas/química , Espectrometria de Massas em Tandem
8.
Yi Chuan ; 43(11): 1088-1100, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34815211

RESUMO

The interactions between Emiliania huxleyi and E. huxleyi virus (EhV) regulate marine carbon and sulfur biogeochemical cycle and play a prominent role in global climate change. As a large DNA virus, EhVs have developed a novel "virocell metabolism" model to meet their higher metabolic needs. However, the regulatory mechanism of this metabolic model is still largely unclear. MicroRNAs (miRNAs) can regulate biological pathways through targeting hub genes in the metabolic processes. Here, we performed high-throughput small RNA sequencing to analyse miRNA expression in EhV99B1 infected E. huxleyi BOF92. A total of 26 miRNAs (including 2 virus-derived miRNAs) were identified, including four up-regulated and one down-regulated miRNAs. These results were further validated through quantitative real-time PCR. Functional enrichment analysis showed that five differentially-expressed miRNAs might be involved in the regulation of carbohydrate metabolism, lipid metabolism and amino acid metabolism. Moreover, the expression levels of differentially-expressed miRNAs were negatively correlated with that of several lipid metabolism-related genes, such as ACC-1, SPT, ACOX, ACAT, CERS and ACADS, indicating that these miRNAs might play an important regulatory role in virus-mediated lipid metabolism.


Assuntos
Haptófitas , MicroRNAs , Viroses , Vírus , Haptófitas/genética , Haptófitas/virologia , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
New Phytol ; 226(2): 396-409, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31850524

RESUMO

Dimethylsulfoniopropionate (DMSP) is a globally abundant marine metabolite and a significant source of organic carbon and sulfur for marine microbial ecosystems with the potential to influence climate regulation. However, the physiological function of DMSP has remained enigmatic for >30 yr. Recent insight suggests that there are different physiological roles for DMSP based on the cellular DMSP concentrations in producers. Differential production of DMSP was tested with multiple physiological experiments that altered nitrate availability, salinity and temperature to create stressed growth and target different metabolic conditions in Emiliania huxleyi, a high DMSP producer and Thalassiosira oceanica, a low DMSP producer. Emiliania huxleyi intracellular DMSP did not respond to metabolically imbalanced conditions, while Thalassiosira oceanica intracellular DMSP was significantly correlated to stressed growth rate across all conditions tested and exhibited a plastic response on a timescale of hours in nonsteady-state. The previous assumption that proposed DMSP mechanism(s) can be universally applied to all producers is shown to be unlikely. Rather, two distinct ecological roles for DMSP likely exist that differ by producer type, where: (1) the primary role of DMSP in high producers is a constitutive compatible solute; and (2) DMSP production in low producers is a finely tuned stress response.


Assuntos
Diatomáceas , Haptófitas , Compostos de Sulfônio , Ecossistema
10.
Glob Chang Biol ; 26(10): 5630-5645, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597547

RESUMO

Ongoing ocean global change due to anthropogenic activities is causing multiple chemical and physical seawater properties to change simultaneously, which may affect the physiology of marine phytoplankton. The coccolithophore Emiliania huxleyi is a model species often employed in the study of the marine carbon cycle. The effect of ocean acidification (OA) on coccolithophore calcification has been extensively studied; however, physiological responses to multiple environmental drivers are still largely unknown. Here we examined two-way and multiple driver effects of OA and other key environmental drivers-nitrate, phosphate, irradiance, and temperature-on the growth, photosynthetic, and calcification rates, and the elemental composition of E. huxleyi. In addition, changes in functional gene expression were examined to understand the molecular mechanisms underpinning the physiological responses. The single driver manipulation experiments suggest decreased nitrate supply being the most important driver regulating E. huxleyi physiology, by significantly reducing the growth, photosynthetic, and calcification rates. In addition, the interaction of OA and decreased nitrate supply (projected for year 2100) had more negative synergistic effects on E. huxleyi physiology than all other two-way factorial manipulations, suggesting a linkage between the single dominant driver (nitrate) effects and interactive effects with other drivers. Simultaneous manipulation of all five environmental drivers to the conditions of the projected year 2100 had the largest negative effects on most of the physiological metrics. Furthermore, functional genes associated with inorganic carbon acquisition (RubisCO, AEL1, and δCA) and calcification (CAX3, AEL1, PATP, and NhaA2) were most downregulated by the multiple driver manipulation, revealing linkages between responses of functional gene expression and associated physiological metrics. These findings together indicate that for more holistic projections of coccolithophore responses to future ocean global change, it is necessary to understand the relative importance of environmental drivers both individually (i.e., mechanistic understanding) and interactively (i.e., cumulative effect) on coccolithophore physiology.


Assuntos
Haptófitas , Expressão Gênica , Haptófitas/genética , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
11.
Geophys Res Lett ; 47(23): e2020GL090559, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33380764

RESUMO

Coccolithophores (calcifying phytoplankton) form extensive blooms in temperate and subpolar oceans as evidenced from ocean-color satellites. This study examines the potential to detect coccolithophore blooms with BioGeoChemical-Argo (BGC-Argo) floats, autonomous ocean profilers equipped with bio-optical and physicochemical sensors. We first matched float data to ocean-color satellite data of calcite concentration to select floats that sampled coccolithophore blooms. We identified two floats in the Southern Ocean, which measured the particulate beam attenuation coefficient (c p) in addition to two core BGC-Argo variables, Chlorophyll-a concentration ([Chl-a]) and the particle backscattering coefficient (b bp). We show that coccolithophore blooms can be identified from floats by distinctively high values of (1) the b bp/c p ratio, a proxy for the refractive index of suspended particles, and (2) the b bp/[Chl-a] ratio, measurable by any BGC-Argo float. The latter thus paves the way to global investigations of environmental control of coccolithophore blooms and their role in carbon export.

12.
J Phycol ; 56(1): 238-242, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657459

RESUMO

Emiliania huxleyi is a globally important coccolithophore and one of the most successful eukaryotic organisms in the modern oceans. Despite a large body of work on this organism, including the sequencing of its genome, the tools required for forward and reverse functional genetic studies are still undeveloped. Here we present an optimized method for the clonal isolation of E. huxleyi by plating on solid medium. We demonstrate the utility of this method for a variety of strains including haploid, calcifying-diploid, and noncalcifying diploid strains. We show that, in contrast to previous studies, no changes in cell ploidy status occur when the cells are plated. Our method will greatly aid attempts to elucidate the genetic basis of the remarkable physiology of E. huxleyi by forward and reverse genetic approaches.


Assuntos
Haptófitas , Diploide , Haploidia , Oceanos e Mares
13.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630776

RESUMO

Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.


Assuntos
Haptófitas/química , Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa/métodos , Ontologia Genética , Peptídeos/análise , Peptídeos/isolamento & purificação , Proteínas/química , Proteínas/isolamento & purificação , Proteoma/análise , Proteoma/genética , Proteoma/isolamento & purificação , Fluxo de Trabalho
14.
J Phycol ; 55(4): 775-788, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31090939

RESUMO

We studied the effects of elevated CO2 concentrations on cell growth, calcification, and spectral variation in the sensitivity of photosynthesis to inhibition by solar radiation in the globally important coccolithophore Emiliania huxleyi. Growth rates and chlorophyll a content per cell showed no significant differences between elevated (800 ppmv) and ambient (400 ppmv) CO2 conditions. However, the production of organic carbon and the cell quotas for both carbon and nitrogen, increased under elevated CO2 conditions, whilst particulate inorganic carbon production rates decreased under the same conditions. Biometric analyses of cells showed that coccoliths only presented significant differences due to treatments in the central area width. Most importantly, the size of the coccosphere decreased under elevated CO2 conditions. The susceptibility of photosynthesis to inhibition by ultraviolet radiation (UVR) was estimated using biological weighting functions (BWFs) and a model that predicts photosynthesis under photosynthetically active radiation and UVR exposures. BWF results demonstrated that the sensitivity of photosynthesis to UVR was not significantly different between E. huxleyi cells grown under elevated and present CO2 concentrations. We propose that the acclimation to elevated CO2 conditions involves a physiological mechanism of regulation and allocation of energy and metabolites in the cell, which is also responsible for altering the sensitivity to UVR. In coccolithophores, this mechanism might be affected by the decrease in the calcification rates.


Assuntos
Haptófitas , Calcificação Fisiológica , Dióxido de Carbono , Clorofila A , Fotossíntese , Raios Ultravioleta
15.
Proc Natl Acad Sci U S A ; 113(13): E1907-16, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26984500

RESUMO

Marine viruses are the most abundant biological entities in the oceans shaping community structure and nutrient cycling. The interaction between the bloom-forming alga Emiliania huxleyi and its specific large dsDNA virus (EhV) is a major factor determining the fate of carbon in the ocean, thus serving as a key host-pathogen model system. The EhV genome encodes for a set of genes involved in the de novo sphingolipid biosynthesis, not reported in any viral genome to date. We combined detailed lipidomic and biochemical analyses to characterize the functional role of this virus-encoded pathway during lytic viral infection. We identified a major metabolic shift, mediated by differential substrate specificity of virus-encoded serine palmitoyltransferase, a key enzyme of sphingolipid biosynthesis. Consequently, unique viral glycosphingolipids, composed of unusual hydroxylated C17 sphingoid bases (t17:0) were highly enriched in the infected cells, and their synthesis was found to be essential for viral assembly. These findings uncover the biochemical bases of the virus-induced metabolic rewiring of the host sphingolipid biosynthesis during the chemical "arms race" in the ocean.


Assuntos
Vírus de DNA/patogenicidade , Haptófitas/virologia , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/biossíntese , Proteínas Virais/metabolismo , Vírus de DNA/metabolismo , Eutrofização , Regulação Viral da Expressão Gênica , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Interações Hospedeiro-Patógeno , Hidroxilação , Doenças das Plantas/virologia , Serina C-Palmitoiltransferase/genética , Proteínas Virais/genética
16.
New Phytol ; 220(1): 147-162, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29916209

RESUMO

Coccolithophores are globally distributed unicellular marine algae that are characterized by their covering of calcite coccoliths. Calcification by coccolithophores contributes significantly to global biogeochemical cycles. However, the physiological requirement for calcification remains poorly understood as non-calcifying strains of some commonly used model species, such as Emiliania huxleyi, grow normally in laboratory culture. To determine whether the requirement for calcification differs between coccolithophore species, we utilized multiple independent methodologies to disrupt calcification in two important species of coccolithophore: E. huxleyi and Coccolithus braarudii. We investigated their physiological response and used time-lapse imaging to visualize the processes of calcification and cell division in individual cells. Disruption of calcification resulted in major growth defects in C. braarudii, but not in E. huxleyi. We found no evidence that calcification supports photosynthesis in C. braarudii, but showed that an inability to maintain an intact coccosphere results in cell cycle arrest. We found that C. braarudii is very different from E. huxleyi as it exhibits an obligate requirement for calcification. The identification of a growth defect in C. braarudii resulting from disruption of the coccosphere may be important in considering their response to future changes in ocean carbonate chemistry.


Assuntos
Calcificação Fisiológica , Haptófitas/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Ecologia , Germânio/farmacologia , Haptófitas/citologia , Haptófitas/crescimento & desenvolvimento , Haptófitas/ultraestrutura , Fotossíntese/efeitos dos fármacos , Polissacarídeos/metabolismo , Silício/farmacologia , Tubulina (Proteína)/metabolismo
17.
Glob Chang Biol ; 24(6): 2545-2553, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29394007

RESUMO

The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate-origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989. E. huxleyi's blooms keep pace with the changing climate of the Barents Sea, namely ocean warming and shifts in the position of the Polar Front, resulting in an exceptionally rapid range shift compared to what is generally detected in the marine realm. We propose that as the Eurasian Basin of the Arctic Ocean further atlantifies and ocean temperatures continue to rise, E. huxleyi and other temperate-origin phytoplankton could well become resident bloom formers in the Arctic Ocean.


Assuntos
Biota , Mudança Climática , Haptófitas/fisiologia , Temperatura Alta , Fitoplâncton/fisiologia , Água do Mar/química , Regiões Árticas , Oceano Atlântico , Noruega , Dinâmica Populacional
18.
Arch Microbiol ; 200(3): 413-422, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29184974

RESUMO

Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. PCD (apoptosis) is mainly brought about by the activation of caspases, a protease family with unique substrate selectivity. Here, we demonstrated that virus infection induced apoptosis of marine coccolithophorid Emiliania huxleyi BOF92 involving activation of metacaspase. E. huxleyi cells exhibited cell death process akin to that of apoptosis when exposed to virus infection. We observed typical hallmarks of apoptosis including cell shrinkage, associated nuclear morphological changes and DNA fragmentation. Immunoblotting revealed that antibody against human active-caspase-3 shared epitopes with a protein of ≈ 23 kDa; whose pattern of expression correlated with the onset of cell death. Moreover, analysis on two-dimensional gel electrophoresis revealed that two spots of active caspase-3 co-migrated with the different isoelectric points. Phosphatase treatment of cytosolic extracts containing active caspases-3 showed a mobility shift, suggesting that phosphorylated form of this enzyme might be present in the extracts. Computational prediction of phosphorylation sites based on the amino acid sequence of E. huxleyi metacaspase showed multiple phosphorylated sites for serine, threonine and tyrosine residues. This is the first report showing that phosphorylation modification of metacaspase in E. huxleyi might be required for certain biochemical and morphological changes during virus induced apoptosis.


Assuntos
Apoptose , Caspases/metabolismo , Vírus Gigantes/fisiologia , Haptófitas/enzimologia , Fitoplâncton/enzimologia , Sequência de Aminoácidos , Caspases/genética , Sequência Conservada , Fragmentação do DNA , Expressão Gênica , Haptófitas/genética , Haptófitas/ultraestrutura , Haptófitas/virologia , Fosforilação , Processamento de Proteína Pós-Traducional
19.
J Phycol ; 54(1): 85-104, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29092105

RESUMO

Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope-endoplasmic reticulum Ca2+ -store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.


Assuntos
Carbonato de Cálcio/metabolismo , Haptófitas/fisiologia , Organelas/fisiologia
20.
Proc Natl Acad Sci U S A ; 112(21): 6643-7, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964340

RESUMO

Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.


Assuntos
Haptófitas/virologia , Phycodnaviridae/patogenicidade , Fitoplâncton/virologia , Aerossóis , Microbiologia do Ar , DNA Viral/genética , DNA Viral/isolamento & purificação , Ecossistema , Eutrofização , Genes Virais , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Fosfoglicerato Mutase/genética , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa