RESUMO
Natural species have developed complex nanostructures in a hierarchical pattern to control the absorption, reflection, or transmission of desired solar and infrared wavelengths. This bio-inspired structure is a promising method to manipulating solar energy and thermal management. In particular, human hair is used in this article to highlight the optothermal properties of bio-inspired structures. This study investigated how melanin, an effective solar absorber, and the structural morphology of aligned domains of keratin polymer chains, leading to a significant increase in solar path length, which effectively scatter and absorb solar radiation across the hair structure, as well as enhance thermal ramifications from solar absorption by fitting its radiative wavelength to atmospheric transmittance for high-yield radiative cooling with realistic human body thermal emission.
Assuntos
Energia Solar , Humanos , Transição de Fase , Temperatura Baixa , Citoesqueleto , CabeloRESUMO
Space heating and cooling consume ~13% of global energy every year. The development of advanced materials that promote energy savings in heating and cooling is gaining increasing attention. To thermally isolate the space of concern and minimize the heat exchange with the outside environment has been recognized as one effective solution. To this end, here, we develop a universal category of colorful low-emissivity paints to form bilayer coatings consisting of an infrared (IR)-reflective bottom layer and an IR-transparent top layer in colors. The colorful visual appearance ensures the aesthetical effect comparable to conventional paints. High mid-infrared reflectance (up to ~80%) is achieved, which is more than 10 times as conventional paints in the same colors, efficiently reducing both heat gain and loss from/to the outside environment. The high near-IR reflectance also benefits reducing solar heat gain in hot days. The advantageous features of these paints strike a balance between energy savings and penalties for heating and cooling throughout the year, providing a comprehensive year-round energy-saving solution adaptable to a wide variety of climatic zones. Taking a typical midrise apartment building as an example, the application of our colorful low-emissivity paints can realize positive heating, ventilation, and air conditioning energy saving, up to 27.24 MJ/m2/y (corresponding to the 7.4% saving ratio). Moreover, the versatility of the paint, along with its applicability to diverse surfaces of various shapes and materials, makes the paints extensively useful in a range of scenarios, including building envelopes, transportation, and storage.
RESUMO
The cooling power provided by radiative cooling is unwanted during cold hours. Therefore, self-adaptive regulation is desired for radiative cooling, especially in all-weather applications. However, current routes for radiative cooling regulation are constrained by substrates and complicated processing. Here, self-adaptive radiative cooling regulation on various potential substrates (transparent wood, PET, normal glass, and cement) was achieved by a Fabry-Perot structure consisting of a silver nanowires (AgNWs) bottom layer, PMMA spacer, and W-VO2 top layer. The emissivity-modulated transparent wood (EMTW) exhibits an emissivity contrast of 0.44 (ε8-13-L = â¼0.19 and ε8-13-H = â¼0.63), which thereby yields considerable energy savings across different climate zones. The emissivity contrast can be adjusted by varying the spinning parameters during the deposition process. Positive emissivity contrast was also achieved on three other industrially relevant substrates via this facile and widely applicable route. This proves the great significance of the approach to the promotion and wide adoption of radiative cooling regulation concept in the built environment.
RESUMO
MXenes have attracted growing interest in electrochemical energy storage owing to their high electronic conductivity and editable surface chemistry. Besides, rendering MXenes with spectrum defense properties further broadens their versatile applications. However, the development of MXenes suffers from weak van der Waal interaction-driven self-restacking that leads to random alignment and inferior interface microenvironments. Herein, a nacre-inspired MXene film is tailored by dual-filling of 2-ureido-4[1H]-pyrimidinone (UPy)-modified polyvinyl alcohol (PVA-UPy) and carbon nanotubes (CNTs). The dual-nanofillers engineering endows the nanocomposite film with a highly ordered structure (a Herman's order value of 0.838), a high mechanical strength (139.5 MPa), and continuous conductive pathways of both the ab plane and c-axis. As a proof-of-concept, the tailored nanocomposite film achieves a considerable capacitance of 508.2 F cm-3 and long-term cycling stability without performance degradation for 10 000 cycles. It is efficient for spectra defense in radar and infrared bands, displaying a high electromagnetic shielding capacity (19186 dB cm2 g-1) and a super-low infrared (IR) emissivity (0.16), with negligible performance decay after saving in the air for 1 year, responsible for the applications in specific and complex conditions. This interfacial dual-filler engineering concept showcases effective nanotechnology toward sustainable energy applications with a long lifetime and safety.
RESUMO
Energy conversion from the environment into electricity is the most direct and effective electricity source to sustainably power off-grid electronics, once the electricity requirement exceeds the capability of traditional centralized power supply systems. Normally photovoltaic cells have enabled distributed power generation during the day, but do not work at night. Thus, efficient electricity generation technologies for a sustainable all-day power supply with no necessity for energy storage remain a challenge. Herein, an innovative all-day power generation strategy is reported, which self-adaptively integrates the diurnal photothermal and nocturnal radiative cooling processes into the thermoelectric generator (TEG) via the spectrally dynamic modulated coating, to continuously harvest the energy from the hot sun and the cold universe for power generation. Synergistic with the optimized latent heat phase change material, the electricity generation performance of the TEG is dramatically enhanced, with a maximum power density exceeding 1000 mW m-2 during the daytime and up to 25 mW m-2 during the nighttime, corresponding to an improvement of 123.1% and 249.1%, compared with the conventional strategy. This work maximizes the utilization of ambient energy resources to provide an environmentally friendly and uninterrupted power generation strategy. This opens up new possibilities for sustained power generation both daytime and nighttime.
RESUMO
It is important to develop low infrared (IR) emissive coating with tunable structure color to improve the infrared-visible stealth performance of military equipment. In this work, uniform ZnO spheres are used as building units to construct photonic structures with both bright adjustable structure color and low IR emissivity due to the relatively high refractive index and low IR emissivity of ZnO. The vivid tunable structural colors are provided by the photonic bandgap of ZnO photonic crystals (PCs) or the quasi-bandgap of amorphous photonic crystals (APCs), respectively. Both ZnO PCs and APCs exhibited low IR emissivity in 3-5 µm. The IR emissivity of 255 nm ZnO PC is 0.483 and the IR emissivity of 255 nm ZnO APC is 0.492 at 25 °C. With the increase of temperature, the IR emissivity of further decreased to 0.295 and 0.312 at 300 °C. These structures can be applied to a variety of surfaces, and all these structures have good thermal and light stability as well. This work may open a simple and effective way to fabricate materials with good infrared-visible stealth performance, expanding the application of ZnO PCs and APCs coatings in the camouflage area.
RESUMO
Multi-spectral temperature measurement technology has been found to have extensive applications in engineering practice. Addressing the challenges posed by unknown emissivity in multi-spectral temperature measurement data processing, this paper adds emissivity constraints to the objective function. It proposes a multi-spectral radiation temperature measurement data processing model realized through a particle swarm optimization algorithm improved based on multiple strategies. This paper simulates six material models with distinct emissivity trends. The simulation results indicate that the algorithm calculates an average relative temperature error of less than 0.3%, with an average computation time of merely 0.24 s. When applied to the temperature testing of silicon carbide and tungsten, experimental data further confirmed its accuracy: the absolute temperature error for silicon carbide (tungsten) is less than 4 K (7 K), and the average relative error is below 0.4% (0.3%), while two materials maintain an average computation time of 0.33 s. In summary, the improved particle swarm optimization algorithm demonstrates strong performance and high accuracy in multi-spectral radiation thermometry, making it a feasible solution for addressing multi-spectral temperature measurement challenges in practical engineering applications. Additionally, it can be extended to other multi-spectral systems.
RESUMO
Accurate measurement of the infrared spectral emissivity of nickel-based alloys is significant for applications in aerospace. The low thermal conductivity of these alloys limits the accuracy of direct emissivity measurement, especially during the oxidation process. To improve measurement accuracy, a surface temperature correction method based on two thermocouples was proposed to eliminate the effect of thermal conductivity changes on emissivity measurement. By using this method, the infrared spectral emissivity of Inconel 601, Inconel 625, and Inconel 718 alloys was accurately measured during the oxidation process, with a temperature range of 673-873 K, a wavelength range of 3-20 µm, and a zenith angle range of 0-80°. The results show that the emissivity of the three alloys is similar in value and variation law; the emissivity of Inconel 718 is slightly less than that of Inconel 601 and Inconel 625; and the spectral emissivity of the three alloys strongly increases in the first hour, whereafter it grows gradually with the increase in oxidation time. Finally, Inconel 601 has a lower emissivity growth rate, which illustrates that it possesses stronger oxidation resistance and thermal stability. The maximum relative uncertainty of the emissivity measurement of the three alloys does not exceed 2.6%, except for the atmospheric absorption wavebands.
RESUMO
For accelerate construction of the energy and resource-saving and environmental-friendly society, cleaner preparation of low-cost and high-performance colorful near-infrared reflective inorganic pigments with the decorative function is indispensable to reduce the hazards of urban heat island and simultaneously beautify the appearance of the buildings. Due to the non-toxicity, good chemical stability and narrow band gap, BiVO4has been becoming a promising environment-friendly yellow inorganic pigments among the conventional heavy metals-containing inorganic pigments. In this study, the low-cost and brilliant kaolinite-based BiVO4hybrid pigments were fabricated by cleaner mechanochemical method based on cheap and abundant kaolinite using crystal water of the hydrated metal salts as trace solvent, which could effectively promote the interaction of the involved components at the molecular level during grinding and then decreased the mass transfer resistance for the formation of monoclinic scheelite BiVO4in the following calcination. The obtained hybrid pigments at the optimal preparation conditions exhibited brilliant color properties (D65-10°,L*= 83.45 ± 0.08,a*= 4.17 ± 0.08,b*= 88.59 ± 0.17), high near-infrared reflectance of 86.22%, infrared solar reflectance of 88.14% and high emissivity of 0.9369 in the waveband of 8-13µm. Furthermore, the hybrid pigments could be used for coloring epoxy resin with high emissivity of 0.8782 in 8-13µm. Therefore, the brilliant and low-cost kaolinite-based bismuth yellow hybrid pigments have the enormous potential to be served as colorful functional nanofillers for cooling roofing materials.
RESUMO
While surface microstructures of butterfly wings have been extensively studied for their structural coloration or optical properties within the visible spectrum, their properties in infrared wavelengths with potential ties to thermoregulation are relatively unknown. The midinfrared wavelengths of 7.5 to 14 µm are particularly important for radiative heat transfer in the ambient environment, because of the overlap with the atmospheric transmission window. For instance, a high midinfrared emissivity can facilitate surface cooling, whereas a low midinfrared emissivity can minimize heat loss to surroundings. Here we find that the midinfrared emissivity of butterfly wings from warmer climates such as Archaeoprepona demophoon (Oaxaca, Mexico) and Heliconius sara (Pichincha, Ecuador) is up to 2 times higher than that of butterfly wings from cooler climates such as Celastrina echo (Colorado) and Limenitis arthemis (Florida), using Fourier-transform infrared (FTIR) spectroscopy and infrared thermography. Our optical computations using a unit cell approach reproduce the spectroscopy data and explain how periodic microstructures play a critical role in the midinfrared. The emissivity spectrum governs the temperature of butterfly wings, and we demonstrate that C. echo wings heat up to 8 °C more than A. demophoon wings under the same sunlight in the clear sky of Irvine, CA. Furthermore, our thermal computations show that butterfly wings in their respective habitats can maintain a moderate temperature range through a balance of solar absorption and infrared emission. These findings suggest that the surface microstructures of butterfly wings potentially contribute to thermoregulation and provide an insight into butterflies' survival.
Assuntos
Regulação da Temperatura Corporal/fisiologia , Borboletas/fisiologia , Raios Infravermelhos , Asas de Animais/fisiologia , Animais , Colorado , Biologia Computacional , Ecossistema , Equador , Florida , México , Modelos Biológicos , Fenômenos Ópticos , Análise Espectral , Luz Solar , Temperatura , Asas de Animais/ultraestruturaRESUMO
Emissivity variations are one of the most critical challenges in thermography technologies; this is due to the temperature calculation strongly depending on emissivity settings for infrared signal extraction and evaluation. This paper describes an emissivity correction and thermal pattern reconstruction technique based on physical process modelling and thermal feature extraction, for eddy current pulsed thermography. An emissivity correction algorithm is proposed to address the pattern observation issues of thermography in both spatial and time domains. The main novelty of this method is that the thermal pattern can be corrected based on the averaged normalization of thermal features. In practice, the proposed method brings benefits in enhancing the detectability of the faults and characterization of the materials without the interference of the emissivity variation problem at the object's surfaces. The proposed technique is verified in several experimental studies, such as the case-depth evaluation of heat-treatment steels, failures, and fatigues of gears made of the heat-treated steels that are used for rolling stock applications. The proposed technique can improve the detectability of the thermography-based inspection methods and would improve the inspection efficiency for high-speed NDT&E applications, such as rolling stock applications.
RESUMO
Land surface microwave emissivity is crucial to the accurate retrieval of surface and atmospheric parameters and the assimilation of microwave data into numerical models over land. The microwave radiation imager (MWRI) sensors aboard on Chinese FengYun-3 (FY-3) series satellites provide valuable measurements for the derivation of global microwave physical parameters. In this study, an approximated microwave radiation transfer equation was used to estimate land surface emissivity from MWRI by using brightness temperature observations along with corresponding land and atmospheric properties obtained from ERA-Interim reanalysis data. Surface microwave emissivity at the 10.65, 18.7, 23.8, 36.5, and 89 GHz vertical and horizontal polarizations was derived. Then, the global spatial distribution and spectrum characteristics of emissivity over different land cover types were investigated. The seasonal variations of emissivity for different surface properties were presented. Furthermore, the error source was also discussed in our emissivity derivation. The results showed that the estimated emissivity was able to capture the major large-scale features and contains a wealth of information regarding soil moisture and vegetation density. The emissivity increased with the increase in frequency. The smaller surface roughness and increased scattering effect may result in low emissivity. Desert regions showed high emissivity microwave polarization difference index (MPDI) values, which suggested the high contrast between vertical and horizontal microwave signals in this region. The emissivity of the deciduous needleleaf forest in summer was almost the greatest among different land cover types. There was a sharp decrease in the emissivity at 89 GHz in the winter, possibly due to the influence of deciduous leaves and snowfall. The land surface temperature, the radio-frequency interference, and the high-frequency channel under cloudy conditions may be the main error sources in this retrieval. This work showed the potential capabilities of providing continuous and comprehensive global surface microwave emissivity from FY-3 series satellites for a better understanding of its spatiotemporal variability and underlying processes.
Assuntos
Monitoramento Ambiental , Micro-Ondas , Monitoramento Ambiental/métodos , Solo , Temperatura , Propriedades de SuperfícieRESUMO
Coatings for passive radiative cooling applications must be highly reflected in the solar spectrum, and thus can hardly support any coloration without losing their functionality. In this work, a colorful daytime radiative cooling surface based on structural coloration is reported. A designed radiative cooler with a bioinspired array of truncated SiO2 microcones is manufactured via a self-assembly method and reactive ion etching. Complemented with a silver reflector, the radiative cooler exhibits broadband iridescent coloration due to the scattering induced by the truncated microcone array while maintaining an average reflectance of 95% in the solar spectrum and a high thermal emissivity (ε) of 0.95, owing to the reduced impedance mismatch provided by the patterned surface at infrared wavelengths, reaching an estimated cooling power of ≈143 W m-2 at an ambient temperature of 25 °C and a measured average temperature drop of 7.1 °C under direct sunlight. This strong cooling performance is attributed to its bioinspired surface pattern, which promotes both the aesthetics and cooling capacity of the daytime radiative cooler.
Assuntos
Dióxido de Silício , Luz Solar , Temperatura Baixa , Transição de Fase , TemperaturaRESUMO
Temperature rise during Raman spectroscopy can induce chemical alterations of the material under analysis and seriously affect its characterization. Thus, such photothermal side effects can represent a serious problem to be carefully controlled in order to safeguard the integrity of the material and its spectral features. In this work, an innovative probe for thermally controlled portable Raman spectroscopy (exc. 785 nm) equipped with infrared sensing lines was developed. It included an infrared source and two thermopile sensors, which allowed to perform real-time measurements of the local emissivity of the material surface under laser excitation. The emissivity, which is needed in order to monitor the temperature of the irradiated surface through infrared radiation measurements, represents the complementary component of the reflectance in the radiative energy balance. Thus, total reflectance, temperature measurements and Raman spectroscopy were integrated in the present probe. After independently assessing the reliability of the former in order to derive the emissivity of variety of materials, the probe was successfully applied on pigments, paint layers, and a painting on canvas. The results achieved evidence the significant exploitation potential of the novel tool.
RESUMO
To achieve rapid and precise non-contact measurements of coating emissivity at room temperature, a measurement method based on infrared thermal imager was proposed. By applying two irradiations with different energies to the target and reference surfaces, the influences of atmospheric transmittance, radiation of the target itself, environmental radiation, and atmospheric path radiation were eliminated, thereby enabling accurate emissivity measurement. Experiments were designed for validation with a mid-wave infrared thermal imager and a surface blackbody as the radiation source. Several combinations of irradiation energy were set to investigate the effects of average energy and energy difference between the two irradiations on the measured results. The normal emissivity of the coated sample plate in the mid-wave band was measured to generate the image of coating surface emissivity. Then, the emissivity measurement results of the proposed method were compared with those of the energy method and the point emissivity measuring instrument under the same conditions, and the comparison indicated that the proposed method can effectively measure the emissivity of coating. Some factors causing measurement errors were analyzed. Finally, an experiment was designed to compare the measurement speed between the proposed method and the currently used methods, and the experimental results were analyzed.
RESUMO
An experimental procedure for characterizing the size-of-source effect (SSE) is proposed. Such an effect is the cause of one of the main influence variables generating uncertainty in the measurement, both in calibration and use, of direct reading radiation thermometers (RT). The procedure and uncertainty calculation described in the paper are aligned in terms of metrological traceability, with the requirements generally imposed to ensure the accuracy of measurements in industry and science. Results of application and validation of this particular procedure with equipment, including black body (BB) sources normally used in radiation thermometry calibration laboratories in the industrial field, are shown.
Assuntos
Termômetros , Termometria , Calibragem , Laboratórios , Incerteza , Termometria/métodosRESUMO
The currently used energy methods in spectral emissivity measurement are susceptible to the difference in temperature between the target and the reference blackbody. It is also limited by the state of the observation target and observation. This paper introduces the irradiance condition, while using the correlation between the information of emission energy and reflected energy of the high-temperature target. Based on the principle of radiative transmission and energy conservation, the relationship between the emissivity and bidirectional reflectance factor (BRF) was used to perform the retrieval of emissivity and temperature. An experimental device was designed, and graphite and rock were considered to verify the feasibility of the experimental scheme. The error of emissivity and temperature of both targets were, respectively, less than 5% and 0.5%, due to the Lambertian assumption, and the systematic errors had negligible impact on the retrieval. This verifies that the experimental observation method and scheme is reasonable.
RESUMO
Far infrared radiation (FIR) is emitted by every body at a given temperature, including the human body. FIR ranging between 4-14 µm is considered useful for cell growth, and the human body emits a maximum of infrared (IR) radiation at the wavelength of approximately 9.3 µm. In the present study, fabrics based on five different raw textiles having the same yarn count as well as the same weaving patterns were designed and created. Some of them were subjected to a coating process. The fabrics to be tested were as follows: coated with TiO2 nanoparticles, coated with SiO2 nanoparticles, coated fabric that does not contain bioceramic nanoparticle (BNFC), and non-coated fabrics (NCF). The structural characterization of the resulting samples was performed using scanning electron microscopy (SEM), abrasion tests, and air permeability. Following the structural characterization, the infrared emissivity properties were investigated using infrared thermography as well as attenuated total reflectance Fourier-transform infrared spectroscopy in the 8-14 IR range. According to the experimental findings, the fabrics coated with TiO2 and SiO2 displayed increased infrared emissivity values compared to the uncoated ones. In addition, it was observed that the use of bioceramic powders had no effect on air permeability and abrasion properties.
Assuntos
Nanopartículas , Titânio , Humanos , Microscopia Eletrônica de Varredura , Dióxido de Silício , TêxteisRESUMO
Existing smart radiation devices suffer from numerous disadvantages such as large thicknesses, limited dimensions, or requirements for sustained electrical power. The present study addresses these issues by proposing a smart thermal control coating based on CaF2/VO2 core-shell (CaF2@VO2) structured microspheres prepared by a solvent/hydrothermal-calcination method and distributed within an easily applied polymer matrix. Here, the dielectric-to-metallic transition property of the VO2 shell material with increasing temperature is used to regulate the optical scattering and absorption characteristics of the CaF2@VO2 core-shell microspheres to realize a positive and reversible increase in the emissivity of the coating from 0.47 at 30 °C to 0.83 at 90 °C. The mechanisms behind this effect are investigated by theoretical analyses and numerical simulations. The present work can expect to promote the further research and development of new coating materials for smart thermal control applications.
RESUMO
Thermal radiation in the mid-infrared region profoundly affects human lives in various fields, including thermal management, imaging, sensing, camouflage, and thermography. Due to their fixed emissivities, radiance features of conventional materials are usually proportional to the quadruplicate of surface temperature, which set the limit, that one type of material can only present a single thermal function. Therefore, it is necessary and urgent to design materials for dynamic thermal radiation regulations to fulfill the demands of the age of intelligent machines. Recently, the ability of some smart materials to dynamically regulate thermal radiation has been evaluated. These materials are found to be competent enough for various commands, thereby, providing better alternatives and tremendously promoting the commercial potentials. In this review, the dynamic regulatory mechanisms and recent progress in the evaluation of these smart materials are summarized, including thermochromic materials, electrochromic materials, mechanically and humidity responsive materials, with the potential applications, insufficient problems, and possible strategies highlighted.