RESUMO
PURPOSE: To compare the diagnostic approach of acute pulmonary embolism (PE) with photon-counting-detector CT (PCD-CT) and energy-integrating-detector CT (EID-CT). MATERIALS AND METHODS: Two cohorts underwent CT angiographic examinations with EID-CT (Group 1; n = 158) and PCD-CT (Group 2; n = 172), (b) with two options in Group 1, dual energy (Group 1a) or single energy (Group 1b) and a single option in Group 2 (spectral imaging with single source). RESULTS: In Group 2, all patients benefited from spectral imaging, only accessible to 105 patients (66.5%) in Group 1, with a mean acquisition time significantly shorter (0.9 ± 0.1 s vs 4.0 ± 0 .3 s; p < 0.001) and mean values of CTDIvol and DLP reduced by 46.3% and 47.7%, respectively. Comparing the quality of 70 keV (Group 2) and averaged (Group 1a) images: (a) the mean attenuation within pulmonary arteries did not differ (p = 0.13); (b) the image noise was significantly higher (p < 0.001) in Group 2 with no difference in subjective image noise (p = 0.29); and (c) 89% of examinations were devoid of artifacts in Group 2 vs 28.6% in Group 1a. The percentage of diagnostic examinations was 95.2% (100/105; Group 1a), 100% (53/53; Group 1b), and 95.3% (164/172; Group 2). There were 4.8% (5/105; Group 1a) and 4.7% (8/172; Group 2) of non-diagnostic examinations, mainly due to the suboptimal quality of vascular opacification with the restoration of a diagnostic image quality on low-energy images. CONCLUSION: Compared to EID-CT, morphology and perfusion imaging were available in all patients scanned with PCD-CT, with the radiation dose reduced by 48%. CLINICAL RELEVANCE STATEMENT: PCD-CT enables scanning patients with the advantages of both spectral imaging, including high-quality morphologic imaging and lung perfusion for all patients, and fast scanning-a combination that is not simultaneously accessible with EID-CT while reducing the radiation dose by almost 50%.
Assuntos
Angiografia por Tomografia Computadorizada , Fótons , Embolia Pulmonar , Embolia Pulmonar/diagnóstico por imagem , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Doença Aguda , Angiografia por Tomografia Computadorizada/métodos , Adulto , Tomografia Computadorizada por Raios X/métodos , Idoso de 80 Anos ou mais , Artéria Pulmonar/diagnóstico por imagemRESUMO
PURPOSE: The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS: Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS: Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION: The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT: ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
RESUMO
This study aimed to evaluate the potential reduction in contrast medium utilization using photon-counting detector computed tomography (PCD-CT). One PCD-CT scan (CT1) and three conventional (non-PCD-CT) CT scans (CT2-CT4) were performed using a multi-energy CT phantom that contained eight rods with different iodine concentrations (0.2, 0.5, 1, 2, 5, 10, 15, and 20 mg/ml). The CT values of the seven groups (CT1 for 40, 50, 60, and 70 keV; and CT2-4) were measured. Noise and contrast-to-noise ratio (CNR) were assessed for the eight rods at various iodine concentrations. CT2 and CT1 (40 keV) respectively required 20 mg/ml and 5 mg/ml of iodine, indicating that a comparable contrast effect could be obtained with approximately one-fourth of the contrast medium amount. The standard deviation values increased at lower energy levels irrespective of the iodine concentration. The CNR exhibited a decreasing trend with lower iodine concentrations, while it remained relatively stable across all iodine levels (40-70 keV). This study demonstrated that virtual monochromatic 40 keV images offer a similar contrast effect with a reduced contrast medium amount when compared to conventional CT systems at 120 kV.
Assuntos
Meios de Contraste , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X , Meios de Contraste/química , Tomografia Computadorizada por Raios X/métodos , Iodo , HumanosRESUMO
PURPOSE: To explore the potential differences in epicardial adipose tissue (EAT) volume and attenuation measurements between photon-counting detector (PCD) and energy-integrating detector (EID)-CT systems. METHODS: Fifty patients (mean age 69 ± 8 years, 41 male [82 %]) were prospectively enrolled for a research coronary CT angiography (CCTA) on a PCD-CT within 30 days after clinical EID-based CCTA. EID-CT acquisitions were reconstructed using a Bv40 kernel at 0.6 mm slice thickness. The PCD-CT acquisition was reconstructed at a down-sampled resolution (0.6 mm, Bv40; [PCD-DS]) and at ultra-high resolutions (PCD-UHR) with a 0.2 mm slice thickness and Bv40, Bv48, and Bv64 kernels. EAT segmentation was performed semi-automatically at about 1 cm intervals and interpolated to cover the whole epicardium within a threshold of -190 to -30 HU. A subgroup analysis was performed based on quartile groups created from EID-CT data and PCD-UHRBv48 data. Differences were measured using repeated-measures ANOVA and the Friedman test. Correlations were tested using Pearson's and Spearman's rho, and agreement using Bland-Altman plots. RESULTS: EAT volumes significantly differed between some reconstructions (e.g. EID-CT: 138 ml [IQR 100, 188]; PCD-DS: 147 ml [110, 206]; P<0.001). Overall, correlations between PCD-UHR and EID-CT EAT volumes were excellent, e.g. PCD-UHRBv48: r: 0.976 (95 % CI: 0.958, 0.987); P<0.001; with good agreement (mean bias: -9.5 ml; limits of agreement [LoA]: -40.6, 21.6). On the other hand, correlations regarding EAT attenuation was moderate, e.g. PCD-UHRBV48: r: 0.655 (95 % CI: 0.461, 0.790); P<0.001; mean bias: 6.5 HU; LoA: -2.0, 15.0. CONCLUSION: EAT attenuation and volume measurements demonstrated different absolute values between PCD-UHR, PCD-DS as well as EID-CT reconstructions, but showed similar tendencies on an intra-individual level. New protocols and threshold ranges need to be developed to allow comparison between PCD-CT and EID-CT data.
RESUMO
OBJECTIVE: Fat deposition is an important marker of many metabolic diseases. As a noninvasive and convenient examination method, CT has been widely used for fat quantification. With the clinical application of photon-counting detector (PCD)-CT, we aimed to investigate the accuracy, stability, and dose level of PCD-CT using various scan settings for fat quantification. MATERIALS AND METHODS: Eleven agar-based lipid-containing phantoms (vials with different fat fractions [FFs]; range: 0 %-100 %) were scanned using PCD-CT. Three scanning types (sequence scan, regular spiral scan with a pitch of 0.8, and high-pitch spiral scan with a pitch of 3.2), four tube voltages (90, 120, 140, and 100 kV with a tin filter), and three image quality (IQ) levels (IQ levels of 20, 40, and 80) were alternated, and each scan setting was used twice. For each scan, a 70-keV image was generated using the same reconstruction parameters. A regular spiral scan at 120 kV with IQ80 was used to transfer the CT numbers of all scans to the FF. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were implemented for accuracy and agreement evaluation, and group differences were compared using analysis of variance. RESULTS: Excellent agreement and accuracy of FF derived by PCD-CT with all scan settings was demonstrated by high ICCs (>0.9; range: 0.929-0.998, p < 0.017) and low bias (<5% range: -2.9 %-5%). The root mean square error (RMSE) between the PCD-CT-acquired FF and the reference standard ranged from 1.0 % to 5.0 %, among which the high-pitch scan at 120 kV with IQ20 accounted for the lowest RMSE (1.0 %). The spiral scan at 120 kV with IQ20 and IQ80 yielded the lowest bias (mean value: 1.19 % and 1.23 %, respectively). CONCLUSION: Fat quantification using PCD-CT reconstructed at 70 keV was accurate and stable under various scan settings. PCD-CT has great potential for fat quantification using ultralow radiation doses.
Assuntos
Tecido Adiposo , Imagens de Fantasmas , Fótons , Tecido Adiposo/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação , HumanosRESUMO
PURPOSE: To compare the inter-reader agreement of pancreatic adenocarcinoma resectability assessment at pancreatic protocol photon-counting CT (PCCT) with conventional energy-integrating detector CT (EID-CT). METHODS: A retrospective single institution database search identified all contrast-enhanced pancreatic mass protocol abdominal CT performed at an outpatient facility with both a PCCT and EID-CT from 4/11/2022 to 10/30/2022. Patients without pancreatic adenocarcinoma were excluded. Four fellowship-trained abdominal radiologists, blinded to CT type, independently assessed vascular tumor involvement (uninvolved, abuts ≤ 180°, encases > 180°; celiac, superior mesenteric artery (SMA), common hepatic artery (CHA), superior mesenteric vein (SMV), main portal vein), the presence/absence of metastases, overall tumor resectability (resectable, borderline resectable, locally advanced, metastatic), and diagnostic confidence. Fleiss's kappa was used to calculate inter-reader agreement. CTDIvol was recorded. Radiation dose metrics were compared with a two-sample t-test. A p < .05 indicated statistical significance. RESULTS: 145 patients (71 men, mean[SD] age: 66[9] years) were included. There was substantial inter-reader agreement, for celiac artery, SMA, and SMV involvement at PCCT (kappa = 0.61-0.69) versus moderate agreement at EID-CT (kappa = 0.56-0.59). CHA had substantial inter-reader agreement at both PCCT (kappa = 0.67) and EIDCT (kappa = 0.70). For metastasis identification, radiologists had substantial inter-reader agreement at PCCT (kappa = 0.78) versus moderate agreement at EID-CT (kappa = 0.56). CTDIvol for PCCT and EID-CT were 16.9[7.4]mGy and 29.8[26.6]mGy, respectively (p < .001). CONCLUSION: There was substantial inter-reader agreement for involvement of 4/5 major peripancreatic vessels (celiac artery, SMA, CHA, and SMV) at PCCT compared with 2/5 for EID-CT. PCCT also afforded substantial inter-reader agreement for metastasis detection versus moderate agreement at EID-CT with statistically significant radiation dose reduction.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Masculino , Estudos Retrospectivos , Feminino , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia , Idoso , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Meios de Contraste , Fótons , Variações Dependentes do Observador , Idoso de 80 Anos ou mais , AdultoRESUMO
The clinical imaging features of photon-counting detector (PCD) computed tomography (CT) are mainly known as dose reduction, improvement of spatial resolution, and reduction of artifacts compared to energy-integrating detector CT (EID-CT). The utility of cranial and spinal PCD-CT and PCD-CT angiography (CTA) has been previously reported. CTA is a widely used technique for noninvasive evaluation. Cranial CTA is important in brain tumors, especially glioblastoma; it evaluates whether the tumor is highly vascularized prior to an operation and helps in the diagnosis and assessment of bleeding risk. Spinal CTA has an important role in the estimation of feeders and drainers prior to selective angiography in the cases of spinal epidural arteriovenous fistulas and spinal tumors, especially in hemangioblastoma. So far, EID-CTA is commonly performed in an adjunctive role prior to selective angiography; PCD-CTA with high spatial resolution can be an alternative to selective angiography. In the cases of cerebral aneurysms, flow diverters are important tools for the treatment of intracranial aneurysms, and postoperative evaluation with cone beam CT with angiography using diluted contrast media is performed to evaluate stent adhesion and in-stent thrombosis. If CTA can replace selective angiography, it will be less invasive for the patient. In this review, we present representative cases with PCD-CT. We also show how well the cranial and spinal PCD-CTA approaches the accuracy of angiographic and intraoperative findings.
RESUMO
BACKGROUND: Accurate diagnostic imaging is crucial for managing facial fractures, which are a common global occurrence. This study aimed to compare the image quality of Photon Counting Detector CT (PCD-CT) with state-of-the-art Energy Integrating Detector CT (EID-CT) and intraoperative C-arm CBCT (CBCT) in visualizing maxillofacial anatomy using a cadaveric sheep head model. METHODS: Three fresh sheep heads were used, with surgical interventions simulating metal implants in two of them. The specimens were imaged using PCD-CT, EID-CT, and CBCT, following which quantitative assessments of signal-to-noise ratio, sharpness, and artifacts were conducted. A visual grading study was performed by six observers, using criteria focusing on the mandible, orbit, and soft tissues. Statistical analyses included Friedman tests for comparing modalities and Kendall's W and Gwet's AC1 for assessing inter- and intrarater agreement. RESULTS: PCD-CT demonstrated a significantly higher signal-to-noise ratio (p = 0.03) and bone sharpness (p < 0.001) compared to CBCT. In visual grading, PCD-CT outperformed CBCT, but not EID-CT, particularly in delineating mandibular and orbital structures. EID-CT and PCD-CT showed slightly more severe hypodense artifacts (p = 0.01) but were comparable in streak artifact presentation. The interrater and intrarater agreements indicated consistent evaluations across and within observers. CONCLUSION: PCD-CT exhibits superior image quality over CBCT in key parameters essential for maxillofacial imaging, while no apparent improvement was shown compared to state-of-the-art EID-CT. PCD-CT offers enhanced visualization of critical anatomical structures, suggesting its potential as a preferred modality in managing maxillofacial trauma. The findings in this study align with limited existing research on PCD-CT, underscoring its promise for advanced diagnostic imaging in maxillofacial applications.
RESUMO
The basic performance of photon-counting detector computed tomography (PCD CT) is superior to conventional CT (energy-integrating detector CT: EID CT) because its spatial- and contrast resolution of soft tissues is higher, and artifacts are reduced. Because the X-ray photon energy separation is better with PCD CT than conventional EID-based dual-energy CT, it has the potential to improve virtual monochromatic- and virtual non-contrast images, material decomposition including quantification of the iodine distribution, and K-edge imaging. Therefore, its clinical applicability may be increased. Although the image quality of PCD CT scans is superior to that of EID CT currently, further improvement may be possible. The introduction of iterative image reconstruction and reconstruction with deep convolutional neural networks will be useful.
Assuntos
Intensificação de Imagem Radiográfica , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Intensificação de Imagem Radiográfica/métodos , Fótons , RadiologistasRESUMO
PURPOSE: To assess the overall imaging performance (radiation dose and image quality) of a photon-counting detector CT (PCD-CT) in comparison with a state-of-the-art energy-integrating detector CT (EID-CT) in run-off CTAs. METHODS: Consecutive patients who underwent run-off CTA on a PCD-CT were included (PCD-CT cohort). A retrospective cohort of patients who had undergone run-off CTA on an EID-CT was matched for gender, body mass index, height, and age (EID-CT cohort). Virtual monoenergetic imaging (VMI) reconstructions for various keV settings (40-120 keV) were generated. CT values and noise were semiautomatically measured for 13 vascular segments of the abdomen, pelvis, and lower extremities. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for each segment. Subjective image quality was evaluated by two radiologists along the dimensions 'vessel attenuation', 'vessel sharpness', and 'overall image quality' using 5-point Likert scales. RESULTS: Forty patients (age 70.9 ± 9.8 years; 14 women) were included in the PCD-CT cohort and matched with a corresponding number of EID-CT patients. Overall, there was an inverse correlation of signal and noise but also of SNR and CNR with keV levels used for VMI reconstructions. SNR and CNR in the 40 - 60 keV range exceeded EID-CT levels significantly. Subjective image quality was substantially higher at lower keV levels and showed no significant difference to EID-CT. CONCLUSION: Low keV VMI reconstructions of run-off CTA scans on a PCD-CT result in substantially higher SNR and CNR than 80 kVp and 100 kVp EID-CT acquisitions with equal subjective image quality.
Assuntos
Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Angiografia por Tomografia Computadorizada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , AbdomeRESUMO
PURPOSE: To compare the radiation dose as well as the image quality of contrast-enhanced abdominal 1st-generation Photon-Counting Detector CT (PCD-CT) to a 2nd-generation Dual-Source Dual-Energy-Integrating-Detector CT (DSCT) in obese patients. METHOD: 51 overweight (BMI ≥ 25 kgm2) patients (median age: 67.00 years; IQR: 59.00-73.00, median BMI 32.15 kgm2; IQR: 28.70-35.76) who underwent clinically indicated, contrast-enhanced abdominal-CT in portal-venous phase on both 2nd-generation DSCT and on a commercially available 1st-generation PCD-CT were prospectively included the degree of obesity was defined by BMI-calculation (overweight, obesity grade I/30-34.9; obesity grade II/35-39.9; obesity grade III > 40) and by the absolute weight value. The same contrast media and pump protocol were used for both scans. PCD-CT was performed in Quantumplus mode at 120 kVp whereas DSCT used also 120 kVp in single energy mode. Comparable convolution algorithm between DSCT and PCD-CT were set. For both scanners, polychromatic images were reconstructed; for PCD-CT data from all counted events above the lowest energy threshold at 20 keV (termed T3D) were used. Two independent radiologists assessed subjective image quality using a 5-point Likert-scale and quantified the contrast-to-noise ratio of parenchymatous organs and vascular structures. RESULTS: Median time interval between the scans was 4 months (IQR 3-7 months). BMI was classified overweight (n = 18, 35.3%), grade I (n = 19, 37.3%), II (n = 9, 17.6%), III (n = 5, 9.8%). Mean CNRrenal_cortex (12.35 ± 3.77 vs. 14.16 ± 3.55) as well as median CNRvessels (9.88 vs. 12.40) and median CNRpancreas (2.81 vs. 4.04) of PCD-CT were significantly higher than those at DSCT (p < 0.05). The inter-reader agreement for all subjective image quality readings was moderate to substantial. Both radiologists independently rated the image quality higher for PCD-CT data sets (p < 0.05). Median CTDI and DLP values for PCD-CT and DSCT were 12.00 mGy (IQR: 10.20-13.50 mGy) vs. 16.05 mGy (IQR: 14.81-17.98) and 608 mGy * cm (IQR: 521.00-748.00 mGy * cm) vs. and 821.90 mGy * cm (IQR: 709.30-954.00 mGy * cm) (p < 0.001). CONCLUSION: Significant dose reduction by similar or even improved image quality was obtained with abdominal contrast-enhanced CT using PCD-CT in obese patients as compared to 2nd-generation DSCT.
Assuntos
Sobrepeso , Tomografia Computadorizada por Raios X , Abdome , Idoso , Humanos , Obesidade/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/métodosRESUMO
Cochlear implants (CIs) are the primary treatment method in patients with profound sensorineural hearing loss. Interpretation of postoperative imaging with conventional energy-integrating detector computed tomography (EID-CT) following CI surgery remains challenging due to metal artifacts. Still, the photon-counting detector (PCD-CT) is a new emerging technology with the potential to eliminate these problems. This study evaluated the performance of virtual monoenergetic (VME) EID-CT images versus PCD-CT in CI imaging. In this cadaveric study, two temporal bone specimens with implanted CIs were scanned with EID-CT and PCD-CT. The images were assessed according to the visibility of interelectrode wire, size of electrode contact, and diameter of halo artifacts. The visibility of interelectrode wire sections was significantly higher when reviewing PCD-CT images. The difference in diameter measurements for electrode contacts between the two CT scanner modalities showed that the PCD-CT technology generally led to significantly larger diameter readings. The larger measurements were closer to the manufacturer's specifications for the CI electrode. The size of halo artifacts surrounding the electrode contacts did not differ significantly between the two imaging modalities. PCT-CT imaging is a promising technology for CI imaging with improved spatial resolution and better visibility of small structures than conventional EID-CT.