Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 353, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918718

RESUMO

Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (hucMSC-sEVs) have been demonstrated as a therapeutic agent to prevent and treat cisplatin-induced acute kidney injury (AKI). However, hucMSC-sEVs still face many problems and challenges in the repair and treatment of tissue injury, including short circulation time, insufficient targeting, and low therapeutic efficacy. Therefore, we constructed engineered hybrid vesicles fused with nanovesicles derived from human neutrophil membranes and hucMSC-sEVs, named neutrophil membrane engineered hucMSC-sEVs (NEX). NEX significantly enhanced the targeting of hucMSC-sEVs to injured kidney tissues, improved the impaired renal function via reducing pro-inflammatory cytokines expression, promoted the proliferation of renal tissue cells, and inhibited renal cell apoptosis in vivo. In addition, NEX enhanced hucMSC-sEVs uptake by NRK52E cells, but inhibited its uptake by RAW264.7 cells. Moreover, administration of NEX reduced cellular oxidative stress and promoted proliferation of NRK52E cells treated with cisplatin in vitro. In summary, our findings indicate that this design of a universal approach enhances the targeting and therapeutic efficacy of hucMSC-sEVs in kidney tissue regeneration, and provides new evidence promoting its clinical application.


Assuntos
Injúria Renal Aguda , Exossomos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Cisplatino , Exossomos/metabolismo , Humanos , Neutrófilos , Cordão Umbilical/metabolismo
2.
Adv Sci (Weinh) ; : e2309307, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923329

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) degeneration and vision loss. Since irreversible neurodegeneration occurs before diagnosable, early diagnosis and effective neuroprotection are critical for glaucoma management. Small extracellular vesicles (sEVs) are demonstrated to be potential novel biomarkers and therapeutics for a variety of diseases. In this study, it is found that intravitreal injection of circulating plasma-derived sEVs (PDEV) from glaucoma patients ameliorated retinal degeneration in chronic ocular hypertension (COH) mice. Moreover, it is found that PDEV-miR-29s are significantly upregulated in glaucoma patients and are associated with visual field defects in progressed glaucoma. Subsequently, in vivo and in vitro experiments are conducted to investigate the possible function of miR-29s in RGC pathophysiology. It is showed that the overexpression of miR-29b-3p effectively prevents RGC degeneration in COH mice and promotes the neuronal differentiation of human induced pluripotent stem cells (hiPSCs). Interestingly, engineered sEVs with sufficient miR-29b-3p delivery exhibit more effective RGC protection and neuronal differentiation efficiency. Thus, elevated PDEV-miR-29s may imply systemic regulation to prevent RGC degeneration in glaucoma patients. This study provides new insights into PDEV-based glaucoma diagnosis and therapeutic strategies for neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa