Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Res ; 208: 112737, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074351

RESUMO

Wastewater reclamation and reuse are important methods that help to achieve an equilibrium within demand and offer, and also one of the important ways to reduce carbon emission. The existence of secondary effluent organic matter (EfOM) will bring potential threat to the environment in reuse process. Therefore, it is important to develop reclaimed water reuse technology that effectively remove EfOM. In this study, the removal of EfOM performance of ferrates enhanced by FeCl2 (Fe(VI)/Fe(II)) combined with sludge adsorbents (SAs) was evaluated by using the continuous-flow process (FeSDF), which was composed of Fe(VI)/Fe(II), SAs, densadeg and filtration. The results showed that when the inflow rate was 1 L/h, the optimal operating conditions of FeSDF including 5 mg/L of Fe(VI), 1 mg/L of Fe(II), 1 g/L of SA and 50% of the reflux ratio. Bulk organic indicators, including chemical oxygen demand, dissolved organic carbon, ammonia, total nitrogen, total phosphorus, turbidity, and ultraviolet absorbance at 254 nm in the effluent met the water quality standard for scenic environment use (GB/T 18921-2019 in China). The addition of Fe(II) makes the coagulation process by Fe(VI) produce more Fe(III) and produce more quality of sedimentary flocs and improve the removal efficiency of EfOM. The removal of organic micro-pollutants (OMPs) was mainly due to ferrate oxidation and SA adsorption in FeSDF, and the removal of most of the OMPs was more than 90%. The total fluorescence intensity removal efficiency in FeSDF was 63.8%. Moreover, the genotoxicity of the FeSDF effluent decreased to 0.73 µg 4-nitroquiniline-N-oxide/L, and the reduction efficiency reached 97.6%. The actual efficiency of most of the indicators is greater than the expected efficiency, indicating that there is a synergistic comprehensive effect during the whole process operation of FeSDF.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Compostos Ferrosos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Environ Res ; 190: 110014, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768476

RESUMO

Zeolite-Mg/Fe chloride dual enhanced coagulation is a cost-effective method for advanced treatment of swine wastewater, but the sludge generated after the enhanced coagulation remains to be a problem. In this study, the precipitate from a swine wastewater coagulation unit was regenerated by pyrolysis treatment in an O2-limited environment to develop a high efficient adsorbent (biochar-mineral composite, BMC) for the removal of Pb(II) from wastewater. SEM images indicate that complex Mg/Fe oxides and sludge biochar gathered around zeolite particles. Effects of different influencing factors such as Pb(II) initial concentration, pH, adsorption time and ion concentration on the adsorption performance were investigated. The results show that the Langmuir isotherm model can better express the adsorption of Pb(II) on BMC than Freundlich model and Temkin model. BMC pyrolyzed at 500 °C showed the maximum adsorption capacity of 450.58 mg/g under experimental condition of 25 °C, 100 mg/L Pb(II) initial concentration and the initial pH of 5.6. The adsorption mechanisms on BMC mainly include ion exchange, electrostatic interaction. Therefore, it is a cost-effective and environmental-friendly strategy to obtain biochar-mineral composite from recycled sludge, which can efficiently remove Pb(II) from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Minerais , Esgotos , Suínos , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 233: 739-747, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396682

RESUMO

Micro-polluted surface water with low turbidity and low content of dissolved organic matter (DOM) is usually inefficiently purified. In this work, a combined technique for the enhanced coagulation of this surface water was proposed and investigated using cationic grafted starch (St-G) and polyaluminum chloride (PACl) as co-coagulants, followed by a magnetic ion-exchange resin (MIER). St-G was fed before PACl, and this procedure not only efficiently removes turbidity but also largely reduces the doses of the two coagulants. MIER remarkably removed DOM, and raw water was effectively purified. The entire coagulation process was further optimized through response surface methodology based on a central composite design by using the doses of St-G, PACl, and MIER as input variables. The dose effects of the three chemicals on the coagulation performance for turbidity and DOM removal were examined, and the coagulation mechanisms, including the interactive effect among various chemicals, were discussed in detail. This work provided a new strategy for the efficient treatment of low-turbidity micro-polluted surface water by utilizing organic and inorganic co-coagulants with magnetic ion-exchange resin in practical applications.


Assuntos
Poluição da Água , Purificação da Água , Hidróxido de Alumínio
4.
Environ Monit Assess ; 191(2): 49, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610395

RESUMO

The present world has been facing the problem of municipal solid waste disposal with the generation of highly complex and toxic landfill leachate. Thus, in this research work, treatability of landfill leachate had been investigated by the combined approach of air stripping, Fenton oxidation, and enhanced coagulation to comply with discharge standard. At the initial stage of treatment, air stripping of raw leachate was implemented which removes around 51.50% of COD, 74.60% of BOD5, and 97.60% of NH3-N within 36 h of optimum retention time. Following air stripping, Fenton oxidation was applied with an optimum molar ratio of 1.9 of H2O2/Fe+2 which register a maximal removal of 67.70% of COD, 92.30% of BOD5, and 14.90% of Hg. Finally, enhanced coagulation (EC) with in situ formed Mn-Fe hydr(oxides) was employed and optimized by central composite design (CCD) of response surface methodology (RSM). Response surface plots denote an optimum condition of 0.13 M ratio of Mn/Fe, 22.67 mM of coagulant dose, and 7.78 of pH which corresponds to a maximum removal of 55.98% of COD and 77.68% of Hg. FTIR analysis of the precipitates of EC explained that the hydroxyl groups are primarily involved in the process of Hg removal. Moreover, EDAX spectrum also assured the removal of Hg by its existence with Mn-Fe complexes. Thus, the present line of treatment record an overall removal of 90.80% of COD, 98.0% of BOD5, 97.60% of NH3-N, and 82.68% of Hg which proves to be effective for the removal of leachate pollutants.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peróxido de Hidrogênio/química , Ferro/química , Mercúrio , Oxirredução , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos
5.
J Environ Sci (China) ; 79: 311-320, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784454

RESUMO

Tracking the variation of the algogenic organic matter (AOM) released during the proliferation of green algae and subsequent treatment processes is crucial for constructing and optimizing control strategies. In this study, the potential of the spectroscopic tool was fully explored as a surrogate of AOM upon the cultivation of green algae and subsequent coagulation/flocculation (C/F) treatment processes using ZrCl4 and Al2(SO4)3. Fluorescence excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC) identified the presence of three independent fluorescent components in AOM, including protein-like (C1), fulvic-like (C2) and humic-like components (C3). Size exclusion chromatography (SEC) revealed that C1 in AOM was composed of large-sized proteins and aromatic amino acids. The individual components exhibited their unique characteristics with respect to the dynamic changes. C1 showed the highest correlation with AOM concentrations (R2 = 0.843) upon the C/F processes. C1 could also be suggested as an optical predictor for the formation of trihalomethanes upon the C/F processes. This study sheds a light for the potential application of the protein-like component (C1) as a practical surrogate to track the evolution of AOM in water treatment or wastewater reclamation systems involving Chlorella vulgaris green algae.


Assuntos
Compostos de Alúmen/química , Benzopiranos/química , Chlorella vulgaris/crescimento & desenvolvimento , Cloretos/química , Substâncias Húmicas , Proteínas de Plantas/química , Poluentes da Água/química , Zircônio/química , Floculação , Fluorescência , Espectrometria de Fluorescência , Purificação da Água/métodos
6.
Environ Technol ; 36(5-8): 722-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25241751

RESUMO

Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.


Assuntos
Noxas/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Poluição Química da Água/prevenção & controle , Purificação da Água , Adsorção , Compostos de Alúmen , Desinfecção , Água Potável , Ozônio
7.
Environ Technol ; 35(21-24): 2670-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176300

RESUMO

The impact of adding diatomite on the treatment performance of slightly polluted algae-containing raw water using ozone pre-oxidation and polyaluminum chloride (PAC) coagulation was investigated. Results demonstrated that the addition of diatomite is advantageous due to reduction of the PAC dose (58.33%) and improvement of the removal efficiency of algae, turbidity, and dissolved organic matter (DOM) in raw water. When the ozone concentration was 1.0 mg L⁻¹ and the PAC dosage was 2.5 mg L⁻¹, the removal rates of algae, turbidity, UV254, and TOC were improved by 6.39%, 7.06%, 6.76%, and 4.03%, respectively, with the addition of 0.4 g L⁻¹ diatomite. It has been found that the DOM presented in the Pearl River raw water mainly consisted of small molecules (<1 kDa) and large ones (> 50 kDa). After adding diatomite (0.4 g L⁻¹), the additional removal of 5.77% TOC and 14.82% UV254 for small molecules (<1 kDa) of DOM, and 8.62% TOC and 7.33% UV254 for large ones (>50 kDa) could be achieved, respectively, at an ozone concentration of 1.0 mg L⁻¹ and a PAC dose of 2.5 mg L⁻¹. The growth of anabaena flos-aquae (A.F.) was observed by an atomic force microscope (AFM) before and after adding diatomite. AFM images demonstrate that diatomite may have a certain adsorption on A.F.


Assuntos
Hidróxido de Alumínio/química , Terra de Diatomáceas/química , Dolichospermum flosaquae/química , Oxidantes/química , Ozônio/química , Poluentes da Água/química , Floculação , Membranas Artificiais , Microscopia de Força Atômica , Nefelometria e Turbidimetria , Oxirredução , Ultrafiltração , Purificação da Água/instrumentação , Purificação da Água/métodos
8.
Chemosphere ; 352: 141312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311043

RESUMO

Algal blooms worldwide pose many challenges to drinking water production. Pre-oxidation with NaClO, KMnO4, or ozone is commonly used to enhance algal removal in conventional drinking water treatment processes. However, these currently utilized oxidation methods often result in significant algal cell lysis or impede the operation of the subsequent units. Higher algal removal with pre-chlorination in algal solutions prepared with natural water, compared to those prepared with ultrapure water, has been observed. In the present studies, preliminary findings indicate that ammonium in natural water alters chlorine species to NH2Cl, leading to improved treatment efficiency. NH2Cl with 1.5-3.0 mg∙L-1 as Cl2 with an oxidation time of 3-7 h significantly enhancing algal removal by coagulation. The selective oxidation of surface-absorbed organic matter (S-AOM) by NH2Cl, followed by the subsequent peeling off of this material from the algal surface, leading to an increase in zeta potential from -20.2 mV to -3.8 mV, constitutes the primary mechanism of enhanced algal removal through coagulation. These peeled S-AOM retained their large molecular weight and acted as polymer aids. Compared with NaClO and KMnO4, NH2Cl displays the best performance in improving algal removal, avoiding cell lysis, and decreasing the potential for nitrogenous disinfection byproducts formation under the reaction conditions used in this study. Notably, in major Chinese cities, water purification plants commonly rely on suburban lakes or reservoirs as water sources, necessitating the transportation of raw water over long distances for times up to several hours. These conditions favor the implementation of NH2Cl pre-oxidation. The collective results indicate the potential of NH2Cl oxidation as a viable pretreatment strategy for algal contamination during water treatment processes.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Desinfecção , Cloro , Halogenação , Purificação da Água/métodos , Poluentes Químicos da Água/análise
9.
Water Res ; 250: 121032, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157598

RESUMO

The MNBs-coagulation process as a novel and cleaning enhanced coagulation process has been demonstrated to enhance the removal efficiency of hydrophilic organics. In this study, while continuing the concept of cleaning production, the MNBs-coagulation process was first applied to the ultrafiltration process and was expected to alleviate the ultrafiltration membrane fouling. This study investigated the effect of the involvement of MNBs in coagulation-ultrafiltration process (the MC-UF process) on the fouling behaviour of ultrafiltration membrane based on the calculation of membrane resistance distribution and the fitting of membrane fouling model. In addition, the NOM removal efficiency, floc characteristics analysis and membrane hydrophilicity analysis were used to illustrate the mechanism of mitigating ultrafiltration mebrane fouling by the MC-UF process. The experimental results showed that the involvement of MNBs in the coagulation-ultrafiltration process was able to reduce the irreversible fouling and TMP by 43.1 % and 41.6 % respectively. This phenomenon could be attributed to the involvement of MNBs in the coagulation process to improve the removal efficiency of hydrophilic organics and to enhance the characteristics of flocs, thus reducing the possibility of hydrophilic organics and broken flocs entering and blocking the membrane pores. In addition, the FT-IR spectral changes before and after the floc breakage were analyzed by 2D-COS technique in this study, and it was found for the first time that the participation of MNBs in the coagulation process could change the sequence of functional group transformation within the floc, and promote the generation of hydrogen bonds between flocs by hindering the generation of hydroxyl groups (-OH), and improve the shear resistance and regrowth capacity of flocs while reducing the possibility of broken flocs entering and blocking membrane pores. In summary, the MC-UF process proposed in this study can significantly mitigate ultrafiltration membrane fouling while meeting cleaning production, providing theoretical support for the application of the process to practical engineering.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos , Membranas Artificiais , Floculação , Substâncias Húmicas/análise
10.
Water Res ; 266: 122398, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244865

RESUMO

Chemical moderate preoxidation for algae-laden water is an economical and prospective strategy for controlling algae and exogenous pollutants, whereas it is constrained by a lack of effective on-line evaluation and quick-response feedback method. Herein, excitation-emission matrix parallel factor analysis (EEM-PARAFAC) was used to identify cyanobacteria fluorophores after preoxidation of sodium hypochlorite (NaClO) at Excitation/Emission wavelength of 260(360)/450 nm, based on which the algal cell integrity and intracellular organic matter (IOM) release were quantitatively assessed. Machine learning modeling of fluorescence spectral data for prediction of moderate preoxidation using NaClO was established. The optimal NaClO dosage for moderate preoxidation depended on algal density, growth phases, and organic matter concentrations in source water matrices. Low doses of NaClO (<0.5 mg/L) led to short-term desorption of surface-adsorbed organic matter (S-AOM) without compromising algal cell integrity, whereas high doses of NaClO (≥0.5 mg/L) quickly caused cell damage. The optimal NaClO dosage increased from 0.2-0.3 mg/L to 0.9-1.2 mg/L, corresponding to the source water with algal densities from 0.1 × 106 to 2.0 × 106 cells/mL. Different growth stages required varying NaClO doses: stationary phase cells needed 0.3-0.5 mg/L, log phase cells 0.6-0.8 mg/L, and decaying cells 2.0-2.5 mg/L. The presence of natural organic matter and S-AOM increased the NaClO dosage limit with higher dissolved organic carbon (DOC) concentrations (1.00 mg/L DOC required 0.8-1.0 mg/L NaClO, while 2.20 mg/L DOC required 1.5-2.0 mg/L). Compared to other predictive models, the machine learning model (Gaussian process regression-Matern (0.5)) performed best, achieving R2 values of 1.000 and 0.976 in training and testing sets. Optimal preoxidation followed by coagulation effectively removed algal contaminants, achieving 91%, 92%, and 92% removal for algal cells, turbidity, and chlorophyll-a, respectively, thereby demonstrating the effectiveness of moderate preoxidation. This study introduces a novel approach to dynamically adjust NaClO dosage by monitoring source water qualities and tracking post-preoxidation fluorophores, enhancing moderate preoxidation technology application in algae-laden water treatment.

11.
Chemosphere ; 366: 143429, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349069

RESUMO

Wastewater treatment plants (WWTPs) meeting strict nutrient discharge regulations typically effectively remove inorganic nitrogen, leaving dissolved organic nitrogen (DON) as the main component of total nitrogen in the effluent. DON in treated effluent from both WWTPs and drinking water treatment plants (DWTPs) has the potential to induce eutrophication and contribute to the formation of nitrogenous disinfection byproducts (N-DBP). While numerous studies have investigated DON in different water sources, a limited number of studies have focused on its removal through enhanced coagulation. The variable removal efficiencies of dissolved organic carbon (DOC) and DON in treatment processes highlight the need for comprehensive research on enhanced coagulation for DON removal. Enhanced coagulation is a viable option for DON removal, but underlying mechanisms and influencing factors are still being actively researched. The effectiveness of enhanced coagulation depends on DON characteristics and coagulant properties, but knowledge gaps remain regarding their influence on treatment. DON is a complex mixture of compounds, with only a small fraction identified, such as proteins, degraded amino acids, urea, chelating agents, humic substances, and soluble microbial products. Understanding molecular-level characteristics of DON is crucial for identifying unknown compounds and understanding its fate and transformation during treatment processes. This review identifies knowledge gaps regarding enhanced coagulation process for DON removal, including the role of coagulant aids, novel coagulants, and pretreatment options. It discusses DON characteristics, removal mechanisms, and molecular-level transformation of DON during enhanced coagulation. Addressing these gaps can lead to process optimization, promote efficient DON removal, and facilitate safe water production.

12.
Chemosphere ; 337: 139384, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414300

RESUMO

With the recent focus on using advanced water treatment processes for water reuse, interest is growing for utilizing enhanced coagulation to remove dissolved chemical species. Up to 85% of the nitrogen in wastewater effluent is made up of dissolved organic nitrogen (DON), but there is a knowledge gap regarding its removal during coagulation, which can be influenced by DON characteristics. To address this issue, tertiary-treated wastewater samples were analyzed before and after coagulation with polyaluminum chloride and ferric chloride. Samples were size-fractionated into four molecular weight fractions (0.45 µm, 0.1 µm, 10 kDa, and 3 kDa) using vacuum filtration and ultrafiltration. Each fraction was further evaluated by coagulating it separately to assess DON removal during enhanced coagulation. The size fractionated samples were also separated into hydrophilic and hydrophobic fractions using C18 solid phase extraction disks. Fluorescence excitation-emission matrices were used to investigate the characteristics of dissolved organic matter contributing to DON during the coagulation process. The results showed that DON compounds of size <3 kDa constituted a majority of the total DON. Coagulation removed more than 80% DON from size fractions 0.45 µm-0.1 µm and 0.1 µm-10 kDa, but less than 20% was removed from 10 kDa to 3 kDa and <3 kDa fractions. Coagulation on pre-filtered samples removed 19% and 25% of the <3 kDa DON fraction using polyaluminum chloride and ferric chloride, respectively. In all molecular weight fractions, hydrophilic DON compounds were found to be dominant (>90%), and enhanced coagulation was not effective in removing hydrophilic DON compounds. LMW fractions respond poorly to enhanced coagulation due to their hydrophilic nature. Enhanced coagulation effectively removes humic acid-like substances, but poorly removes proteinaceous compounds such as tyrosine and tryptophan. This study's findings provide insights into DON behavior during coagulation and factors affecting its removal, potentially improving wastewater treatment strategies.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Matéria Orgânica Dissolvida , Nitrogênio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
13.
Chemosphere ; 313: 137251, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395895

RESUMO

This study was carried out to investigate the enhanced removal of arsenite (As(III)) by potassium ferrate (K2FeO4) coupled with three Al-based coagulants, which focused innovatively on the distribution and transformation of hydrolyzed aluminum species as well as the mechanism of K2FeO4 interacted with different aluminum hydrolyzed polymers during As(III) removal. Results demonstrated that As(III) removal efficiency could be substantially elevated by K2FeO4 coupled with three Al-based coagulants treatment and the optimum As(III) removal effect was occurred at pH 6 with more than 97%. K2FeO4 showed a great effect on the distribution and transformation of aluminum hydrolyzed polymers and then coupled with a variety of aluminum species produced by the hydrolysis of aluminum coagulants for arsenic removal. During enhanced coagulation, arsenic removal by AlCl3 was main through the charge neutralization of in situ Al13 and the sweep flocculation of Al(OH)3, while PACl1 mainly depended on the charge neutralization of preformed Al13 and the bridging adsorption of Al13 aggregates, whereas PACl2 mainly relied on the sweep flocculation of Al(OH)3. This study provided a new insight into the distribution and transformation of aluminum species for the mechanism of As(III) removal by K2FeO4 coupled with different Al-based coagulants.


Assuntos
Arsênio , Purificação da Água , Alumínio , Purificação da Água/métodos , Hidróxido de Alumínio , Polímeros , Floculação
14.
Sci Total Environ ; 877: 162864, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931510

RESUMO

Most wastewater treatment facilities that satisfy stricter discharge restrictions for nutrients, remove dissolved inorganic nitrogen (DIN) species efficiently, leaving dissolved organic nitrogen (DON) to be present at a higher proportion (up to 85 %) of total nitrogen (TN) in the effluent. Discharged DON promotes algae growth in receiving water bodies and is a growing concern in effluent potable reuse applications considering its potential to form hazardous nitrogenous disinfection byproducts (N-DBPs). Enhanced coagulation is an established process in the advanced water treatment train for most potable reuse applications. However, so far, no information has been collected at the pilot scale to address DON removal efficiency and process implications by enhanced coagulation under real conditions. This study performed a comprehensive evaluation of DON removal from the effluent of the Truckee Meadows Water Reclamation Facility (TMWRF) by enhanced coagulation over the course of 11 months at the pilot scale. Three different coagulants (aluminum sulfate (alum), poly­aluminum chloride (PACl), ferric chloride (FC)) and a cationic polymer coagulant aid (Clarifloc) were used. Optimum doses for each coagulant and polymer and ideal pH were determined by jar tests and applied at the pilot. Alum (24 mg/L) resulted in highly variable DON removal (6 % - 40 %, 21 % on average), which was enhanced by the addition of polymer, leading to 32 % DON removal on average. PACl (40 mg/L) and FC (100 mg/L) resulted in more consistent DON removal (on average 45 % and 57 %, respectively); however, polymer addition exerted minimal enhancement for these coagulants. Overall, enhanced coagulation effectively reduced DON in the tertiary effluent at the pilot scale. The treatment showed auxiliary benefits, including dissolved organic carbon (DOC) and orthophosphate removal.

15.
Water Res ; 226: 119245, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283233

RESUMO

MNBs (Micro-nano bubbles) are widely used in cleaning processes for environmental treatments, but few studies have examined the interaction of MNBs with coagulation. In this study, a novel process, i.e., MNBs-coagulation, was developed for enhanced drinking water treatment. The humic acid (HA) removal efficiency was used to evaluate the effectiveness of MNBs-coagulation for drinking water treatment. The hydrolysis component ratio of polymeric aluminum chloride (PACl) with and without MNBs, the complexation strength of HA and PACl, and flocculent functional group characterization were used to analyze the mechanism of the MNBs-coagulation process to enhance drinking water treatment. The results of a Jar test showed that the MNBs-coagulation process could improve the removal efficiency of HA (up to a 27.9% increase in DOC removal). In continuous-flow experiments to remove HA, MNBs-coagulation can increase the removal efficiency of UV254 by about 26.5% and with no significant change in turbidity. These results are attributed to the inherent hydroxyl radical generating properties of MNBs, the forced hydrolysis of PACl by MNBs to increase the Alc percentage, and the ability of MNBs to increase the complexation strength of HA with PACl. At the same time, the MNBs-coagulation process has a strong anti-interference ability, almost no interference from anions and cations such as Cl-, SO42- and Ca2+, and has a good performance in natural surface water. In summary, MNBs-coagulation has strong potential for practical applications to enhance the efficiency of drinking water treatment.


Assuntos
Água Potável , Purificação da Água , Floculação , Hidróxido de Alumínio , Purificação da Água/métodos , Substâncias Húmicas/análise , Cloreto de Alumínio
16.
Environ Sci Pollut Res Int ; 29(60): 90318-90327, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35867298

RESUMO

Herein, an enhanced coagulation model is proposed in which zeolite is used as a crystal nucleus to promote flocs. The zeolite is prepared from fly ash by microwave-assisted hydrothermal synthesis. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and specific surface area and pore size analysis (BET) characterization confirmed the successful synthesis of ZFA, and improved the surface properties. Thus, the adsorption capacity of ZFA as crystal nucleus was improved, which enabled it to achieve better results in the process of enhanced coagulation. Compared with those of conventional coagulation, the oil content and SS removal rate of ZFA-enhanced coagulation increased by 85% and 44%, respectively. Compared with that of CFA-enhanced coagulation, the oil removal efficiency increased by 4%, and the SS removal efficiency increased by 9%. The optimal conditions of ZFA-enhanced coagulation were as follows: ZFA dosage of 100 mg/L, pH value of 5-8, ZFA particle size range of 60-75 µm, temperature of 40-50 ℃, and precipitation time of 30 min.


Assuntos
Cinza de Carvão , Zeolitas , Águas Residuárias , Polímeros
17.
Chemosphere ; 303(Pt 3): 135157, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35640692

RESUMO

The novel cascaded catalytic ozonation-enhanced coagulation process (FeCeAC/O3-PAC) was developed with much success towards second effluent organic matter (EfOM) in chemical industrial wastewater. Compared with the conventional techniques, FeCeAC/O3-PAC exhibited remarkable performances in the advanced removal of EfOM. The characteristics of EfOM and interactivities of reaction process played the crucial roles. Especially, the removal rate constant of soluble microbial products (SMPs) with FeCeAC/O3-PAC exceeded 55.38% versus FeCeAC/O3. The outstanding synergistic effect was contributed to the enhanced generation of active oxygen species by FeCeAC and PAC, which increased the content of oxygen-containing functional groups of EfOM and thus facilitated the interaction between PAC and EfOM. As the result, the larger-sized flocs could be formed and separated easily. Herein, this work found a far more effective way to remove EfOM especially low-coagulability refractory organics (LCRO) in chemical sewage plant.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Ozônio/química , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
18.
Sci Total Environ ; 850: 157829, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932863

RESUMO

Microplastic (MP) pollution has increasingly become an enormous global challenge due to the ubiquity and uncertain environmental performance, especially for nano- and micro- sized MPs. In this work, the performance and mechanisms in coagulation of 100 nm-5.0 µm sized polystyrene particles using an etherified starch-based coagulant (St-CTA) assisted by polysilicic acid (PSA) were systematically studied on the basis of the changes in MPs removal rates under various pH levels and in the presence of different coexisting inorganic and organic substances, zeta potentials of supernatants, and floc properties. St-CTA in conjunction with PSA had a high performance in coagulation of nano- and micro- sized MPs from water with a lower optimal dose and larger and compacter flocs. Besides, the MPs removal rate can be improved in acidic and coexisting salt conditions. The efficient performance in removal of MPs by this enhanced coagulation was owing to the synergic effect, that is, the effective aggregation of MPs through the charge neutralization of St-CTA followed by the efficient netting-bridging effect of PSA. The effectiveness of this enhanced coagulation was further confirmed by removal of two other typical nano-sized MPs, such as poly(methyl methacrylate) and poly(vinyl chloride), from different water sources including tap water, river water, and sludge supernatant from a sewage treatment plant. This work provided a novel enhanced coagulation technique that can effectively remove nano- and micro- sized MPs from water.


Assuntos
Cloreto de Vinil , Poluentes Químicos da Água , Purificação da Água , Floculação , Microplásticos , Plásticos , Polimetil Metacrilato , Poliestirenos , Esgotos , Amido , Água , Poluentes Químicos da Água/análise
19.
Chemosphere ; 285: 131515, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265705

RESUMO

In this study, we have investigated the purification efficiency during enhanced coagulation, ozone oxidation and their combined processes for the removal of trace amounts of EDCs in different DOM matrices. The results indicated that the maximum removal efficiency of EDCs occurred at or near pH 7.0 when measured over a pH range of 4.0-10.0. The addition of natural colloids had a two-part influence. While the floc generated by polyaluminium chloride (PAC) significantly increased in size from 198.0 µm to 290.4 µm with a simultaneous improvement in the removal efficiency of EDCs, the floc size generated by polyferric sulfate (PFS) had no worthwhile change except for a slight decrement. The removal efficiency of EDCs and the decrease in spectral parameters including UVA254, UVA280 and humic-like fluorescence during ozonation processes with and without pre-coagulation were investigated. During the ozonation process, efficient elimination of target EDCs are achieved at low O3 doses (O3/dissolved organic carbon (DOC) < 0.2) in different water matrices. The pH-titration differential absorbance spectra technique further demonstrated that the high reactivity of O3 to EDCs is owing to their phenolic moieties. In addition, when mgO3/mgDOC ratio reaches to ~0.40, >90% of estrogenic activity was eliminated. In a nutshell, ozonation with pre-coagulation together leads to considerably higher abatement of EDCs and estradiol (E2) equivalent values (EEQ) at the same ozone dosage than ozonation only process for wastewater treatment.


Assuntos
Disruptores Endócrinos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Tecnologia , Águas Residuárias , Poluentes Químicos da Água/análise
20.
Adv Colloid Interface Sci ; 296: 102518, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34507242

RESUMO

The unintended formation of disinfection by-products (DBPs) has received considerable attention as it may pose risks to human health. Coagulation is the most common process for removing particulates as well as dissolved organic matter (DOM) (i.e., DBP precursors) during drinking water and wastewater treatments. With the improvement of water quality standards and the increased fluctuation in source water quality, conventional coagulation becomes challenging. Thus, significant efforts have been made to enhance coagulation to promote the removal of DOM in source water and mitigate the formation of DBPs in drinking water. This review provides a brief summary of the properties of DBP precursors and summarizes the effectiveness of enhanced coagulation involving three types of coagulants (metal-based coagulants, organic polymers, and organic-inorganic hybrid coagulants) in controlling the formation of DBPs during chlor(am)ination disinfection. Metal-based coagulants can achieve a reduction in DBP formation potential of approximately 20%-60% in natural water under enhanced coagulation conditions. Both the organic polymers (used as coagulant aids) and novel hybrid coagulants increase the removal of DOM and exhibit high potential for mitigating DBP formation. In addition, integrated treatments combining coagulation with other treatment processes (e.g., oxidation, membrane filtration, ion exchange, and adsorption) to enhance DBP precursor removal are evaluated in terms of performance, mechanisms, and features. Advanced treatments, such as membrane filtration and activated carbon adsorption, are effective coagulation-assisted processes, and can further control chlorinated DBPs; however, the elevated formation of bromate or highly brominated DBPs is of particular concern.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa