Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975217

RESUMO

Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.


Assuntos
Técnicas de Transferência de Genes , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Elementos de DNA Transponíveis/genética
2.
Insect Mol Biol ; 30(4): 410-419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866636

RESUMO

The success of transgenic mosquito vector control approaches relies on well-targeted gene expression, requiring the identification and characterization of a diverse set of mosquito promoters and transcriptional enhancers. However, few enhancers have been characterized in Anopheles gambiae to date. Here, we employ the SCRMshaw method we previously developed to predict enhancers in the A. gambiae genome, preferentially targeting vector-relevant tissues such as the salivary glands, midgut and nervous system. We demonstrate a high overall success rate, with at least 8 of 11 (73%) tested sequences validating as enhancers in an in vivo xenotransgenic assay. Four tested sequences drive expression in either the salivary gland or the midgut, making them directly useful for probing the biology of these infection-relevant tissues. The success of our study suggests that computational enhancer prediction should serve as an effective means for identifying A. gambiae enhancers with activity in tissues involved in malaria propagation and transmission.


Assuntos
Anopheles/genética , Biologia Computacional/métodos , Elementos Reguladores de Transcrição , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Expressão Gênica , Regulação da Expressão Gênica , Genoma de Inseto , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Regiões Promotoras Genéticas
3.
Dev Biol ; 416(2): 402-13, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27341759

RESUMO

Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system.


Assuntos
Aedes/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes de Insetos , Sistema Nervoso/embriologia , Aedes/embriologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Padronização Corporal/genética , Sequência Conservada , Culex/embriologia , Culex/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Redes Reguladoras de Genes/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Especificidade da Espécie
4.
Genome Biol Evol ; 6(9): 2301-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25173756

RESUMO

Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Insetos/genética , Animais , Sequência de Bases , Drosophila/química , Drosophila/classificação , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Insetos/química , Insetos/química , Insetos/classificação , Insetos/crescimento & desenvolvimento , Filogenia , Homologia de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa