Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771070

RESUMO

The current study was designed to synthesize, characterize, and screen the molecular and biological activities of different metformin derivatives that possess potent antidiabetic potential with minimal side-effects. Metformin-based derivatives containing the metal complexes Cu II (MCu1-MCu9) and Zn II (MZn1-MZn9) were generated using aromatic aldehydes and ketones in a template process. The novel metal complexes were characterized through elemental analysis, physical state, melting point, physical appearance, Fourier-transform infrared (FTIR) spectroscopy, UV/visible (UV/Vis) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and 13C-NMR spectroscopy. Screening for inhibitory activity against the enzymes α-amylase and α-glucosidase, and molecular simulations performed in Schrödinger were used to assess the synthesized derivatives' biological potential. Met1, Met2, Met3, and Met8 all displayed activities that were on par with the reference in an enzymatic inhibition assay (amylase and glucosidase). The enzyme inhibition assay was corroborated by molecular simulation studies, which also revealed a competitive docking score compared to the gold standard. The Swiss ADME online web server was utilized to compute ADME properties of metformin analogues. Lipinski's rule of five held true across all derivatives, making it possible to determine the percentage of absorption. Metformin derivatives showed significant antidiabetic activities against both targeted enzymes, and the results of this work suggest that these compounds could serve as lead molecules for future study and development.


Assuntos
Complexos de Coordenação , Metformina , Cobre/química , Metformina/farmacologia , Zinco/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases/química
2.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049655

RESUMO

Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC-HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, ß-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety.


Assuntos
Clitoria , Acetilcolinesterase/química , Cromatografia em Camada Fina/métodos , Butirilcolinesterase , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray , Bioensaio
3.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684478

RESUMO

Ethiopian honey is used not only as food but also for treatment in traditional medicine. For its valorization, bioactive compounds were analyzed in nine types of monofloral Ethiopian honey. Therefore, a non-target effect-directed profiling was developed via high-performance thin-layer chromatography combined with multi-imaging and planar effect-directed assays. Characteristic bioactivity profiles of the different honeys were determined in terms of antibacterial, free-radical scavenging, and various enzyme inhibitory activities. Honeys from Hypoestes spp. and Leucas abyssinica showed low activity in all assays. In contrast, others from Acacia spp., Becium grandiflorum, Croton macrostachyus, Eucalyptus globulus, Schefflera abyssinica, Vernonia amygdalina, and Coffea arabica showed more intense activity profiles, but these differed depending on the assay. In particular, the radical scavenging activity of Croton macrostachyus and Coffea arabica honeys, the acetylcholinesterase-inhibiting activity of Eucalyptus globulus and Coffea arabica honeys, and the antibacterial activity of Schefflera abyssinica honey are highlighted. Bioactive compounds of interest were further characterized by high-resolution mass spectrometry. Identifying differences in bioactivity between mono-floral honey types affects quality designation and branding. Effect-directed profiling provides new insights that are valuable for food science and nutrition as well as for the market, and contributes to honey differentiation, categorization, and authentication.


Assuntos
Araliaceae , Coffea , Eucalyptus , Mel , Acetilcolinesterase , Antibacterianos/farmacologia , Cromatografia em Camada Fina/métodos , Etiópia , Mel/análise , Espectrometria de Massas
4.
Eur Biophys J ; 50(7): 1037-1043, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34159406

RESUMO

Selection of pharmacological agents based on potency measurements performed at equilibrium fail to incorporate the kinetic aspects of the drug-target interaction. Here we describe a method for screening or characterization of enzyme inhibitors that allows the concomitant determination of the equilibrium inhibition constant in unison with rates of complex formation and dissociation. The assay is distinct from conventional enzymatic assays and is based on the analysis of inhibition curves recorded prior to full equilibration of the system. The methodology is illustrated using bicyclic peptide inhibitors of the serine protease plasma kallikrein.


Assuntos
Inibidores Enzimáticos , Serina Endopeptidases , Inibidores Enzimáticos/farmacologia , Cinética , Ligação Proteica
5.
Bioorg Chem ; 114: 105054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146919

RESUMO

The historic DHP nucleus was serendipitously discovered by Arthur Hantzsch about 130 years ago and is still considered a hidden treasure for various pharmacological activities. Twenty-one DHP analogues were synthesized using the expedient one pot Hantzsch synthesis for screening as anticancer agents. Initially, the in vitro anti-proliferative single dose against a panel of 18 cancer cell lines showed that compounds 11b and 8f were the superlative candidates regarding their antitumor effect (GI% mean = 66.40% and 50.42%, correspondingly) compared to cisplatin (GI% mean = 65.58%) and doxorubicin (GI% mean = 74.56%). Remarkably, compound 11b showed a remarkable MDA-MB-468 anticancer activity (GI%=80.81%), higher than cisplatin (64.44%) and doxorubicin (76.72%), as well as strong antitumor activity against lung cancer A549 (GI%= 83.02%), more powerful than both cisplatin and doxorubicin. Compound 11b exhibited an exceptional anticancer activity against lung cancer cell line (A549) as its GI50 in nanomolar was (540 nM) with a 9-fold increase greater than cisplatin (GI50 = 4.93 µM) and with a selectivity index = 131 to cancer cells over normal cells. Further mechanistic investigations proved that DHPs anticipate simultaneously TOPI and RTKs (VEGFR-2, HER-2 and BTK) which can stimulate BAX/BAK and the executioner caspases via rtPCR studies.


Assuntos
Antineoplásicos/farmacologia , Di-Hidropiridinas/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
6.
Bioorg Chem ; 115: 105197, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426159

RESUMO

Chinese herbal medicines (CHM) are frequently used to treat different types of inflammatory diseases and 15-Lipoxygenase (15-LOX) is a critical target enzyme for treating various inflammatory diseases. In this study, natural 15-LOX inhibitors were identified in CHM using an approach of virtual screening combined with the biological assays. First, an in-house Chinese medicine database containing 360 compounds was screened using a virtual screening approach based on pharmacophore and molecular docking to uncover several novel potential 15-LOX inhibitors. Secondly, the inhibitory effect of virtual screening hits against the 15-LOX enzyme was validated in an in vitro enzyme inhibition assay. Then, a tumor necrosis factor-α (TNF-α) release assay was carried out to explore the anti-inflammatory response of the active compounds. Furthermore, molecular dynamics (MD) simulation and binding free energy calculation were applied to analyze the process of inhibitors binding and also compared the mode of binding of the inhibitors by using the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) method. Finally, licochalcone B and eriodictyol were confirmed as inhibitors of the 15-LOX enzyme with IC50 values of 9.67 and 18.99 µM, respectively. In vitro cell-based assay showed that licochalcone B and eriodictyol inhibited the release of TNF-α factor in RAW264.7 cells stimulated by lipopolysaccharides (LPS) in a dose-dependent manner. Molecular dynamics and binding free energy analysis showed that the two 15-LOX-ligand systems immediately attained equilibrium with almost 1 Å fluctuation, the calculated binding free energies were found around -18.89 and -12.96 kcal/mol for licochalcone B and eriodictyol, respectively. Thr412, Arg415, Val420, Thr429, Ile602 and Trp606 were the main amino acid residues for the inhibition of 15-LOX enzyme activity. The current study confirms that licochalcone B and eriodictyol are 15-LOX inhibitors and can suppress the release of the TNF-α factor in RAW264.7 cells stimulated by LPS, thus providing a basis for the follow-up research and development for 15-LOX inhibitors.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores de Lipoxigenase/farmacologia , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Medicina Tradicional Chinesa , Camundongos , Estrutura Molecular , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
Bioorg Chem ; 111: 104862, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33862474

RESUMO

For the COVID-19 pandemic caused by SARS-CoV-2, there are currently no effective drugs or vaccines to treat this coronavirus infection. In this study, we focus on the main protease enzyme of SARS-CoV-2, 3CLpro, which is critical for viral replication. We employ explicit solvent molecular dynamics simulations of about 150 compounds docked into 3CLpro's binding site and that had emerged as good main protease ligands from our previous in silico screening of over 1.2 million compounds. By incoporating protein dynamics and applying a range of structural descriptors, such as the ability to form specific contacts with the catalytic dyad residues of 3CLpro and the structural fluctuations of the ligands in the binding site, we are able to further refine our compound selection. Fourteen compounds including estradiol shown to be the most promising based on our calculations were procured and screened against recombinant 3CLpro in a fluorescence assay. Eight of these compounds have significant activity in inhibiting the SARS-CoV-2 main protease. Among these are corilagin, a gallotannin, and lurasidone, an antipsychotic drug, which emerged as the most promising natural product and drug, respectively, and might thus be candidates for drug repurposing for the treatment of COVID-19. In addition, we also tested the inhibitory activity of testosterone, and our results reveal testosterone as possessing moderate inhibitory potency against the 3CLpro enzyme, which may thus provide an explanation why older men are more severely affected by COVID-19.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/metabolismo , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/metabolismo , Antivirais/metabolismo , Sítios de Ligação , Proteases 3C de Coronavírus/metabolismo , Ensaios Enzimáticos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
8.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800407

RESUMO

An effect-directed profiling method was developed to investigate 17 different fortified plant extracts for potential benefits. Six planar effect-directed assays were piezoelectrically sprayed on the samples separated side-by-side by high-performance thin-layer chromatography. Multipotent compounds with antibacterial, α-glucosidase, ß-glucosidase, AChE, tyrosinase and/or ß-glucuronidase-inhibiting effects were detected in most fortified plant extracts. A comparatively high level of antimicrobial activity was observed for Eleutherococcus, hops, grape pomace, passiflora, rosemary and Eschscholzia. Except in red vine, black radish and horse tail, strong enzyme inhibiting compounds were also detected. Most plants with anti-α-glucosidase activity also inhibited ß-glucosidase. Green tea, lemon balm and rosemary were identified as multipotent plants. Their multipotent compound zones were characterized by high-resolution mass spectrometry to be catechins, rosmarinic acid, chlorogenic acid and gallic acid. The results pointed to antibacterial and enzymatic effects that were not yet known for plants such as Eleutherococcus and for compounds such as cynaratriol and caffeine. The nontarget effect-directed profiling with multi-imaging is of high benefit for routine inspections, as it provides comprehensive information on the quality and safety of the plant extracts with respect to the global production chain. In this study, it not only confirmed what was expected, but also identified multipotent plants and compounds, and revealed new bioactivity effects.


Assuntos
Análise de Alimentos/métodos , Extratos Vegetais/química , Antibacterianos/farmacologia , Bioensaio/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Inibidores Enzimáticos , Alimentos , Espectrometria de Massas/métodos
9.
Bioorg Chem ; 104: 104305, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33017718

RESUMO

Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Sulfônicos/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Tiofenos/síntese química , Tiofenos/química , Células Tumorais Cultivadas
10.
J Enzyme Inhib Med Chem ; 35(1): 744-758, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32183576

RESUMO

A series of 24 compounds was synthesised based on a 2-cyclopentyloxyanisole scaffold 3-14 and their in vitro antitumor activity was evaluated. Compounds 4a, 4b, 6b, 7b, 13, and 14 had the most potent antitumor activity (IC50 range: 5.13-17.95 µM), compared to those of the reference drugs celecoxib, afatinib, and doxorubicin. The most active derivatives 4a, 4b, 7b, and 13 were evaluated for their inhibitory activity against COX-2, PDE4B, and TNF-α. Compounds 4a and 13 potently inhibited TNF-α (IC50 values: 2.01 and 6.72 µM, respectively) compared with celecoxib (IC50=6.44 µM). Compounds 4b and 13 potently inhibited COX-2 (IC50 values: 1.08 and 1.88 µM, respectively) comparable to that of celecoxib (IC50=0.68 µM). Compounds 4a, 7b, and 13 inhibited PDE4B (IC50 values: 5.62, 5.65, and 3.98 µM, respectively) compared with the reference drug roflumilast (IC50=1.55 µM). The molecular docking of compounds 4b and 13 with the COX-2 and PDE4B binding pockets was studied.HighlightsAntitumor activity of new synthesized cyclopentyloxyanisole scaffold was evaluated.The powerful antitumor 4a, 4b, 6b, 7b & 13 were assessed as COX-2, PDE4B & TNF-α inhibitors.Compounds 4a, 7b, and 13 exhibited COX-2, PDE4B, and TNF-α inhibition.Compounds 4b and 13 showed strong interactions at the COX-2 and PDE4B binding pockets.


Assuntos
Anisóis/farmacologia , Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Fosfodiesterase 4/farmacologia , Anisóis/síntese química , Anisóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
Arch Pharm (Weinheim) ; 353(1): e1900211, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31696968

RESUMO

N-Substituted isatoic anhydrides were used as starting materials for the synthesis of compounds 5-16 through alkali hydrolysis, Schiff base reactions, and oxidation. Compounds 18-23 were obtained by thionation of their oxo isosteres using Lawesson's reagent. Cyclocondesation of anthranilic acid with thiourea afforded compounds 25-27, which were S-alkylated to afford compounds 28-30, which were thionated using Lawesson's reagent to afford 31-33. The compounds were tested for their in vitro inhibitory activity against the phosphodiesterase 7A (PDE7A) enzyme compared with the selective PDE7 inhibitor BRL50481. All the compounds showed the inhibitory activity on the enzyme at micromolar levels. Compounds 9 and 25 showed the highest inhibitory activity on the enzyme: IC50 = 0.096 and 0.074 µM, respectively, comparable to BRL50481 (IC50 = 0.072 µM). The binding mode and binding affinity of the target compounds at the enzyme PDE7A-binding site were studied through molecular docking. Compounds 9 and 25 showed good recognition at the enzyme-binding site and were capable of binding in an inhibitory mode similar to the reference compound BRL50481, forming the necessary interactions with the key amino acids. Docking studies and enzyme assay were in agreement.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Quinazolinas/farmacologia , Quinazolinonas/farmacologia , Tionas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química
12.
Bioorg Med Chem ; 27(16): 3574-3586, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272837

RESUMO

A modified Grimmel's method for N-heterocyclization of phenylalanine linked sulphonamide side arm at position-2 was optimized leading to 2,3-disustituted-4-quinazolin-(3H)-ones. Further, [Bmim][BF4]-H2O (IL) was used as green solvent as well as catalyst for the synthesis of twenty two hybrid quinazolinone motifs (4a-4v) by N-heterocyclization reaction using microwave irradiation technique. The in vitro screening of the hybrid entities against the malarial species Plasmodium falciparum yielded five potent molecules 4l, 4n, 4r, 4t & 4u owing comparable antimalarial activity to the reference drugs. In continuation, anin silicostudy was carried out to obtain a pharmacophoric model and quantitative structure activity relationship. We also built a 3D-QSAR model to procure more information that could be applied to design new molecules with more potent Pf-DHFR inhibitory activity. The designed pharmacophore was recognized to be more potent for the selected molecules, exhibiting five pharmacophoric features. The active scaffolds were further evaluated for enzyme inhibition efficacy against alleged receptor Pf-DHFR computationally and in vitro, proving their candidature as lead dihydrofolate reductase inhibitors as well as the selectivity of the test candidates was ascertained by toxicity study against vero cells. The perception of good oral bioavailability was also proved by study of pharmacokinetic properties.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Sulfonamidas/uso terapêutico , Antimaláricos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenilalanina , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/farmacologia
13.
Bioorg Med Chem ; 23(24): 7711-6, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631439

RESUMO

A series of novel pyrazole linked triazolo-pyrimidine hybrids were synthesized and evaluated for their anti-tuberculosis activity against M.tb H37Rv strain. Some of the screened entities rendered promising anti-tb activity (MIC: 0.39µg/mL) and were found non toxic against Vero cells (IC50: ⩾20µg/mL). Further, the docking study against wild type InhA enzyme of Mycobacterium tuberculosis using Glide reproduced the most active inhibitors (J21 and J27) with lowest binding energies and highest Glide XP scores demonstrating efficient binding to the active pocket. Additionally, the enzyme inhibition assay and ADME prediction of the active proved to be an attest to the possibility of developing compound J27 as a potent anti-tubercular lead.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Chlorocebus aethiops , Humanos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Triazóis/química , Triazóis/farmacologia , Tuberculose/tratamento farmacológico , Células Vero
14.
Curr Med Chem ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591207

RESUMO

BACKGROUND/AIM: The global pandemic caused by the novel SARS-CoV-2 virus underscores the urgent need for therapeutic interventions. Targeting the virus's main protease (Mpro), crucial for viral replication, is a promising strategy. OBJECTIVE: The current study aims to discover novel inhibitors of Mpro. METHODS: The current study identified five natural compounds (myrrhanol B (C1), myrrhanone B (C2), catechin (C3), quercetin (C4), and feralolide (C5) with strong inhibitory potential against Mpro through virtual screening and computational methods, predicting their binding efficiencies and validated it using the in-vitro inhibition activity. The selected compound's toxicity was examined using the MTT assay on a human BJ cell line. RESULTS: Compound C1 exhibited the highest binding affinity, with a docking score of -9.82 kcal/mol and strong hydrogen bond interactions within Mpro's active site. A microscale molecular dynamics simulation confirmed the stability and tight fit of the compounds in the protein's active pocket, showing superior binding interactions. in vitro assays validated their inhibitory effects, with C1 having the most significant potency (IC50 = 2.85 µM). The non-toxic nature of these compounds in human BJ cell lines was also confirmed, advocating their safety profile. CONCLUSION: These findings highlight the effectiveness of combining computational and experimental approaches to identify potential lead compounds for SARS-CoV-2, with C1-C5 emerging as promising candidates for further drug development against this virus.

15.
Heliyon ; 10(10): e30715, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38774337

RESUMO

Ascorbic acid plays a significant role in regulation of various bodily functions with high concentrations in immune cells and being involved in connective tissue maintenance. Commonly it is detected through various colorimetric methods. In this study, we propose a one-step simple method based on the inhibitory activity of ascorbic acid on horseradish peroxidase and hydrogen peroxide. The detection is observed by colorimetric changes to TMB (3,3',5,5' tetramethylbenzidine). The enzyme inhibition unit was optimized with a high level of linearity (r2 = 0.9999) and the level of detection and level of quantification were found to be 1.35 nM and 4.08 nM, respectively with higher sensitive compared to the HPLC method (11 µM). Both intra and inter-assays showed high correlations at different AA concentrations. (r2 > 0.9999). Similar results were also observed for vitamin C tablets, ascorbate salts, fruits, and market products (r2 = 0.999). There was negligible effect of interference by citric acid, lactic acid, tartaric acids, and glucose with high recoveries (>98%) at 1 mg/mL to 0.0078 mg/mL concentration ranges. The recovery error (RE%) was found to be less than 10%. Our detection method is distinguished by its simplicity, nano-level of detection, reproducibility, and potential application and adaptability as a point-of-use test.

16.
Int J Biol Macromol ; 259(Pt 2): 129314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211912

RESUMO

Protein kinases have emerged as major contributors to various diseases. They are currently exploited as a potential target in drug discovery because they play crucial roles in cell signaling, growth, and regulation. Their dysregulation is associated with inflammatory disorders, cancer, and neurodegenerative diseases. Pyruvate dehydrogenase kinase 3 (PDK3) has become an attractive drug target in cancer therapeutics. In the present study, we investigated the effective role of thymol in PDK3 inhibition due to the high affinity predicted through molecular docking studies. Hence, to better understand this inhibition mechanism, we carried out a 100 ns molecular dynamics (MD) simulation to analyse the dynamics and stability of the PDK3-thymol complex. The PDK3-thymol complex was stable and energetically favourable, with many intramolecular hydrogen bond interactions in the PDK3-thymol complex. Enzyme inhibition assay showed significant inhibition of PDK3 by thymol, revealing potential inhibitory action of thymol towards PDK3 (IC50 = 2.66 µM). In summary, we established thymol as one of the potential inhibitors of PDK3, proposing promising therapeutic implications for severe diseases associated with PDK3 dysregulation. This study further advances our understanding of thymol's therapeutic capabilities and potential role in cancer treatment.


Assuntos
Neoplasias , Timol , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/química , Timol/farmacologia , Simulação de Acoplamento Molecular , Proteínas Quinases/metabolismo , Neoplasias/tratamento farmacológico
17.
Biochim Biophys Acta Biomembr ; 1866(7): 184367, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969202

RESUMO

The natural product curcumin and some of its analogs are known inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Despite their widespread use, the curcuminoids' binding site in SERCA and their relevant interactions with the enzyme remain elusive. This lack of knowledge has prevented the development of curcuminoids into valuable experimental tools or into agents of therapeutic value. We used the crystal structures of SERCA in its E1 conformation in conjunction with computational tools such as docking and surface screens to determine the most likely curcumin binding site, along with key enzyme/inhibitor interactions. Additionally, we determined the inhibitory potencies and binding affinities for a small set of curcumin analogs. The predicted curcumin binding site is a narrow cleft in the transmembrane section of SERCA, close to the transmembrane/cytosol interface. In addition to pronounced complementarity in shape and hydrophobicity profiles between curcumin and the binding pocket, several hydrogen bonds were observed that were spread over the entire curcumin scaffold, involving residues on several transmembrane helices. Docking-predicted interactions were compatible with experimental observations for inhibitory potencies and binding affinities. Based on these findings, we propose an inhibition mechanism that assumes that the presence of a curcuminoid in the binding site arrests the catalytic cycle of SERCA by preventing it from converting from the E1 to the E2 conformation. This blockage of conformational change is accomplished by a combination of steric hinderance and hydrogen-bond-based cross-linking of transmembrane helices that require flexibility throughout the catalytic cycle.


Assuntos
Curcumina , Simulação de Acoplamento Molecular , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Curcumina/química , Curcumina/farmacologia , Curcumina/análogos & derivados , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sítios de Ligação , Animais , Ligação de Hidrogênio , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ligação Proteica
18.
Front Biosci (Landmark Ed) ; 28(8): 184, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37664939

RESUMO

BACKGROUND: A previously unstudied medicinal plant, Leucophyllum frutescens (Berland.) I.M. Johnst. (Scrophulariaceae) was investigated to evaluate its potential in preventing and treating neurodegenerative diseases, including Alzheimer's disease. METHODS: Methanolic leaf extract (MELE) and its fractions (HELE, CHLE, and BULE) were evaluated for their polyphenolic content and antioxidant activity by five different methods, including in vitro enzyme inhibition assays, which are clinically linked to neurodegenerative diseases. The potentially active n-butanol fraction (BULE) was further evaluated for its neuroprotective effects using an albino rat animal model and phytoconstituents profiling using Liquid chromatography with tandem mass spectrometry (LC-MS/MS), and in silico molecular docking by Maestro® Schrödinger. RESULTS: The n-butanol fraction (BULE) in the hydroalcoholic leaf extract exhibited the highest total phenolic content (230.435 ± 1.575 mg gallic acid equivalent gm-1± SD). The chloroform leaf extract exhibited the highest total flavonoid content (293.343 ± 3.756 mg quercetin equivalent gm-1± SD) as well as the highest antioxidant content, which was equivalent to Trolox, with five assay methods. Similarly, the chloroform and n-butanol fractions from the hydroalcoholic leaf extract significantly inhibited human acetylcholinesterase and butyrylcholinesterase with their IC50 values of 12.14 ± 0.85 and 129.73 ± 1.14 µg∙mL-1, respectively. The in vivo study revealed that BULE exhibited a significant neuroprotective effect at doses of 200 and 400 mg/kg/day in an aluminum chloride-induced neurodegenerative albino rat model. The LC-MS/MS analysis of BULE tentatively confirmed the presence of biologically active secondary metabolites, such as theobromine, propyl gallate, quercetin-3-O-glucoside, myricetin-3-acetylrhamnoside, isoquercitrin-6'-O-malonate, diosmetin-7-O-glucuronide-3'-O-pentose, pinoresinol diglucoside, asarinin, eridictoyl, epigallocatechin, methyl gallate derivative, and eudesmin. The results from the computational molecular docking of the identified secondary metabolites revealed that diosmetin-7-O-glucuronide-3'-O-pentose had the highest binding affinity to human butyrylcholinesterase, while isoquercetin-6'-O-malonate had the highest to human acetylcholinesterase, and pinoresinol diglucoside to human salivary alpha-amylase. CONCLUSIONS: The present study concluded a need for further exploration into this medicinal plant, including the isolation of the bioactive compounds responsible for its neuroprotective effects.


Assuntos
Fármacos Neuroprotetores , Scrophulariaceae , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase , Cloreto de Alumínio , Butirilcolinesterase , 1-Butanol , Clorofórmio , Cromatografia Líquida , Glucuronídeos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Hipocampo , Extratos Vegetais/farmacologia
19.
Curr Res Food Sci ; 7: 100542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115899

RESUMO

Wheat amylase/trypsin-inhibitors (ATI) are known triggers for wheat-related disorders. The aims of our study were to determine (1) the inhibitory activity against different α-amylases, (2) the content of albumins and globulins (ALGL) and total ATI and (3) to correlate these parameters in wholegrain flour of hexaploid, tetraploid and diploid wheat species. The amount of ATI within the ALGL fraction varied from 0.8% in einkorn to 20% in spelt. ATI contents measured with reversed-phase high-performance liquid chromatography (RP-HPLC) revealed similar contents (1.2-4.2 mg/g) compared to the results determined by LC-MS/MS (0.2-5.2 mg/g) for all wheat species except einkorn. No correlation was found between ALGL content and inhibitory activity. In general, hexaploid cultivars of spelt and common wheat had the highest inhibitory activities, showing values between 897 and 3564 AIU/g against human salivary α-amylase. Tetraploid wheat species durum and emmer had lower activities (170-1461 AIU/g), although a few emmer cultivars showed similar activities at one location. In einkorn, no inhibitory activity was found. No correlation was observed between the ATI content and the inhibitory activity against the used α-amylases, highlighting that it is very important to look at the parameters separately.

20.
Life (Basel) ; 13(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37374029

RESUMO

While food additives are widely used in the modern food industry and generally are important in maintaining the ability to provide food for the increasing world population, the progress occurring in this field is much ahead of the evaluation of their possible consequences for human health. The present study suggests a set of single- and multi-enzyme assay systems for revealing toxic effects of the most widely spread food preservatives, such as sorbic acid (E200), potassium sorbate (E202), and sodium benzoate (E211) at the primary molecular level of their interaction with enzymes. The assay is based on the inhibition of enzyme activity by toxic substances proportional to the amount of the toxicants in the sample. The single-enzyme assay system based on NAD(P)H:FMN oxidoreductase (Red) proved to be most sensitive to the impact of food additives, with the IC50 values being 29, 14, and 0.02 mg/L for sodium benzoate, potassium sorbate, and sorbic acid, respectively, which is considerably lower than their acceptable daily intake (ADI). No reliable change in the degree of inhibition of the enzyme assay systems by food preservatives was observed upon elongating the series of coupled redox reactions. However, the inhibition of activity of the multi-enzyme systems by 50% was found at a preservative concentration below the maximum permissible level for food. The inhibition effect of food preservatives on the activity of butyrylcholinesterase (BChE), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH) was either absent or found in the presence of food preservatives at concentrations significantly exceeding their ADI. Among the preservatives under study, sodium benzoate is considered to be the safest in terms of the inhibiting effect on the enzyme activity. The results show that the negative effect of the food preservatives at the molecular level of organization of living things is highly pronounced, while at the organismal level it may not be obvious.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa