Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Dev Biol ; 511: 26-38, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38580174

RESUMO

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Assuntos
Tubo Neural , Medula Espinal , Animais , Medula Espinal/embriologia , Tubo Neural/embriologia , Crista Neural/embriologia , Crista Neural/citologia , Crista Neural/fisiologia , Diferenciação Celular/fisiologia , Neuroglia/fisiologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Humanos
2.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436063

RESUMO

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Assuntos
Doenças Fetais , Hidrocefalia , Células-Tronco Neurais , Nascimento Prematuro , Humanos , Feminino , Animais , Camundongos , Epêndima/patologia , Hidrocefalia/cirurgia , Hidrocefalia/metabolismo , Hemorragia Cerebral/terapia , Hemorragia Cerebral/metabolismo , Edema
3.
Acta Neuropathol ; 148(1): 39, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254862

RESUMO

Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.


Assuntos
Encéfalo , Cílios , Epêndima , Epêndima/patologia , Humanos , Animais , Cílios/patologia , Cílios/fisiologia , Encéfalo/patologia , Adulto
4.
Biol Pharm Bull ; 47(6): 1113-1118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839362

RESUMO

Motile cilia in the ependymal cells that line the brain ventricles play pivotal roles in cerebrospinal fluid (CSF) flow in well-defined directions. However, the substances and pathways which regulate their beating have not been well studied. Here, we used primary cultured cells derived from neonatal mouse brain that possess motile cilia and found that adenosine (ADO) stimulates ciliary beating by increasing the ciliary beat frequency (CBF) in a concentration-dependent manner, with the ED50 value being 5 µM. Ciliary beating stimulated by ADO was inhibited by A2B receptor (A2BR) antagonist MRS1754 without any inhibition by antagonists of other ADO receptor subtypes. The expression of A2BR on the cilia was also confirmed by immunofluorescence. The values of CBF were also increased by forskolin, which is an activator of adenylate cyclase, whereas they were not further increased by the addition of ADO. Furthermore, ciliary beating was not stimulated by ADO in the presence of a protein kinase A (PKA) inhibitors. These results altogether suggest that ADO stimulates ciliary beating through A2BR on the cilia, and activation of PKA.


Assuntos
Adenosina , Animais Recém-Nascidos , Encéfalo , Cílios , Proteínas Quinases Dependentes de AMP Cíclico , Receptor A2B de Adenosina , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/fisiologia , Receptor A2B de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adenosina/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Camundongos , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Colforsina/farmacologia , Epêndima/metabolismo , Epêndima/citologia
5.
Cell Mol Life Sci ; 80(7): 181, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329342

RESUMO

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.


Assuntos
Proteínas Hedgehog , Medula Espinal , Humanos , Camundongos , Animais , Proteínas Hedgehog/genética , Medula Espinal/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição/metabolismo , Epêndima/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
6.
Semin Cell Dev Biol ; 110: 51-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32362381

RESUMO

Multiciliated cells (MCC) project dozens to hundreds of motile cilia from the cell surface to generate fluid flow across epithelial surfaces or turbulence to promote the transport of gametes. The MCC differentiation program is initiated by GEMC1 and MCIDAS, members of the geminin family, that activate key transcription factors, including p73 and FOXJ1, to control the multiciliogenesis program. To support the generation of multiple motile cilia, MCCs must undergo massive centriole amplification to generate a sufficient number of basal bodies (modified centrioles). This transcriptional program involves the generation of deuterosomes, unique structures that act as platforms to regulate centriole amplification, the reactivation of cell cycle programs to control centriole amplification and release, and extensive remodeling of the cytoskeleton. This review will focus on providing an overview of the transcriptional regulation of MCCs and its connection to key processes, in addition to highlighting exciting recent developments and open questions in the field.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Centríolos/ultraestrutura , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
7.
J Physiol ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975746

RESUMO

The cells of the choroid plexus (CP) epithelium are specialized ependymal cells (ECs) but have distinct properties. The CP cells and ECs form single-cell sheets contiguous to each other at a transitional zone. The CP is underlined by a basal lamina and has barrier properties, whereas the ECs do not. The basal lamina of the CP is continuous with the glia limitans superficialis and, consequently, the CP stroma is continuous with the meninges along entering blood vessels. The CP has previously been reported to express aquaporin-1 (AQP1) mostly apically, and ECs show mostly basolateral aquaporin-4 (AQP4) expression. Recent evidence in various systems has shown that in changing conditions the expression and distribution of AQP4 can be modified, involving phosphorylation and calmodulin-triggered translocation. Studies on the human CP revealed that AQP4 is also expressed in some CP cells, which is likely to be increased during ageing based on mouse data. Moreover, subependymal astrocytic processes in the ependyma-CP transition, forming a glial plate around blood vessels and facing the CP stroma, were strongly positive for AQP4. We propose that the increased AQP4 expression might be a compensatory mechanism for the observed reduction in CSF production in the ageing human brain. The high AQP4 density in the transition zone might facilitate the transport of water into and out of the CP stroma and serve as a drainage and clearing pathway for metabolites in the CNS.

8.
Cell Mol Neurobiol ; 43(8): 4103-4116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37620636

RESUMO

Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.


Assuntos
Hidrocefalia , Camundongos , Humanos , Animais , Hidrocefalia/genética , Epêndima/metabolismo , Regulação da Expressão Gênica , Mutação/genética , Diferenciação Celular , Cílios/genética , Cílios/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
9.
Cell Mol Life Sci ; 79(2): 90, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072772

RESUMO

The choroid plexus (CP) consists of specialized ependymal cells and underlying blood vessels and stroma producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are considered the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In this study, we analyzed the expression of aquaporins in the human CP using immunofluorescence and qPCR. As previously reported, AQP1 was expressed apically in CP epithelial cells. Surprisingly, and previously unknown, many cells in the CP epithelium were also positive for aquaporin-4 (AQP4), normally restricted to ventricle-lining ependymal cells and astrocytes in the brain. Expression of AQP1 and AQP4 was found in the CP of all eight body donors investigated (3 males, 5 females; age 74-91). These results were confirmed by qPCR, and by electron microscopy detecting orthogonal arrays of particles. To find out whether AQP4 expression correlated with the expression pattern of relevant transport-related proteins we also investigated expression of NKCC1, and Na/K-ATPase. Immunostaining with NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. We hypothesized that AQP4 expression in the CP was caused by age-related changes. To address this, we investigated mouse brains from young (2 months), adult (12 months) and old (30 months) mice. We found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Taken together, we provide evidence for AQP4 expression in the CP of the aging brain which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Epêndima/metabolismo , Células Epiteliais/metabolismo , Idoso , Animais , Aquaporina 4/genética , Cadáver , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
10.
Am J Hum Genet ; 105(5): 1030-1039, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630787

RESUMO

Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.


Assuntos
Ventrículos Cerebrais/patologia , Ciliopatias/genética , Fatores de Transcrição Forkhead/genética , Hidrocefalia/genética , Mutação/genética , Corpos Basais/patologia , Cílios/genética , Cílios/patologia , Ciliopatias/patologia , Epêndima/patologia , Células Epiteliais/patologia , Humanos , Hidrocefalia/patologia
11.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293145

RESUMO

Hypertension is the leading cause of cardiovascular affection and premature death worldwide. The spontaneously hypertensive rat (SHR) is the most common animal model of hypertension, which is characterized by secondary ventricular dilation and hydrocephalus. Aquaporin (AQP) 1 and 4 are the main water channels responsible for the brain's water balance. The present study focuses on defining the expression of AQPs through the time course of the development of spontaneous chronic hypertension. We performed immunofluorescence and ELISA to examine brain AQPs from 10 SHR, and 10 Wistar−Kyoto (WKY) rats studied at 6 and 12 months old. There was a significant decrease in AQP1 in the choroid plexus of the SHR-12-months group compared with the age-matched control (p < 0.05). In the ependyma, AQP4 was significantly decreased only in the SHR-12-months group compared with the control or SHR-6-months groups (p < 0.05). Per contra, AQP4 increased in astrocytes end-feet of 6 months and 12 months SHR rats (p < 0.05). CSF AQP detection was higher in the SHR-12-months group than in the age-matched control group. CSF findings were confirmed by Western blot. In SHR, ependymal and choroidal AQPs decreased over time, while CSF AQPs levels increased. In turn, astrocytes AQP4 increased in SHR rats. These AQP alterations may underlie hypertensive-dependent ventriculomegaly.


Assuntos
Aquaporinas , Hidrocefalia , Hipertensão , Animais , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Aquaporina 1/metabolismo , Encéfalo/metabolismo , Hidrocefalia/metabolismo , Hipertensão/metabolismo , Água/metabolismo , Aquaporina 4/metabolismo , Aquaporinas/metabolismo
12.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996425

RESUMO

JC polyomavirus (JCPyV), a human-specific virus, causes the aggressive brain-demyelinating disease progressive multifocal leukoencephalopathy (PML) in individuals with depressed immune status. The increasing incidence of PML in patients receiving immunotherapeutic and chemotherapeutic agents creates a pressing clinical need to define biomarkers to stratify PML risk and develop anti-JCPyV interventions. Mouse polyomavirus (MuPyV) CNS infection causes encephalopathology and may provide insight into JCPyV-PML pathogenesis. Type I, II, and III interferons (IFNs), which all signal via the STAT1 transcription factor, mediate innate and adaptive immune defense against a variety of viral infections. We previously reported that type I and II IFNs control MuPyV infection in non-central nervous system (CNS) organs, but their relative contributions to MuPyV control in the brain remain unknown. To this end, mice deficient in type I, II, or III IFN receptors or STAT1 were infected intracerebrally with MuPyV. We found that STAT1, but not type I, II, or III IFNs, mediated viral control during acute and persistent MuPyV encephalitis. Mice deficient in STAT1 also developed severe hydrocephalus, blood-brain barrier permeability, and increased brain infiltration by myeloid cells. CD8 T cell deficiency alone did not increase MuPyV infection and pathology in the brain. In the absence of STAT1 signaling, however, depletion of CD8 T cells resulted in lytic infection of the choroid plexus and ependymal lining, marked meningitis, and 100% mortality within 2 weeks postinfection. Collectively, these findings indicate that STAT1 signaling and CD8 T cells cocontribute to controlling MuPyV infection in the brain and CNS injury.IMPORTANCE A comprehensive understanding of JCPyV-induced PML pathogenesis is needed to define determinants that predispose patients to PML, a goal whose urgency is heightened by the lack of anti-JCPyV agents. A handicap to achieving this goal is the lack of a tractable animal model to study PML pathogenesis. Using intracerebral inoculation with MuPyV, we found that MuPyV encephalitis in wild-type mice causes an encephalopathy, which is markedly exacerbated in mice deficient in STAT1, a molecule involved in transducing signals from type I, II, and III IFN receptors. CD8 T cell deficiency compounded the severity of MuPyV neuropathology and resulted in dramatically elevated virus levels in the CNS. These findings demonstrate that STAT1 signaling and CD8 T cells concomitantly act to mitigate MuPyV-encephalopathy and control viral infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Polyomavirus/imunologia , Polyomavirus/imunologia , Fator de Transcrição STAT1/imunologia , Imunidade Adaptativa , Animais , Encéfalo/patologia , Encéfalo/virologia , Encefalopatias/patologia , Encefalopatias/virologia , Plexo Corióideo , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Polyomavirus/mortalidade , Infecções por Polyomavirus/virologia , Fator de Transcrição STAT1/genética , Transdução de Sinais , Baço/patologia , Baço/virologia , Carga Viral
13.
Cell Tissue Res ; 383(2): 835-852, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32902807

RESUMO

Development of the brain ventricular system of vertebrates and the molecular mechanisms involved are not fully understood. The developmental genes expressed in the elements of the brain ventricular system such as the ependyma and circumventricular organs act as molecular determinants of cell adhesion critical for the formation of brain ventricular system. They control brain development and function, including the flow of cerebrospinal fluid. Here, we describe the novel distantly related member of the zebrafish L1-CAM family of genes-camel. Whereas its maternal transcripts distributed uniformly, the zygotic transcripts demonstrate clearly defined expression patterns, in particular in the axial structures: floor plate, hypochord, and roof plate. camel expresses in several other cell lineages with access to the brain ventricular system, including the midbrain roof plate, subcommissural organ, organum vasculosum lamina terminalis, median eminence, paraventricular organ, flexural organ, and inter-rhombomeric boundaries. This expression pattern suggests a role of Camel in neural development. Several isoforms of Camel generated by differential splicing of exons encoding the sixth fibronectin type III domain enhance cell adhesion differentially. The antisense oligomer morpholino-mediated loss-of-function of Camel affects cell adhesion and causes hydrocephalus and scoliosis manifested via the tail curled down phenotype. The subcommissural organ's derivative-the Reissner fiber-participates in the flow of cerebrospinal fluid. The Reissner fiber fails to form upon morpholino-mediated Camel loss-of-function. The Camel mRNA-mediated gain-of-function causes the Reissner fiber misdirection. This study revealed a link between Chl1a/Camel and Reissner fiber formation, and this supports the idea that CHL1 is one of the scoliosis factors.


Assuntos
Moléculas de Adesão Celular/metabolismo , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Hidrocefalia/genética , Hidrocefalia/patologia , Morfolinos/farmacologia , Fenótipo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
14.
Glia ; 68(12): 2451-2470, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32476207

RESUMO

The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.


Assuntos
Células Ependimogliais , Peixe-Zebra , Animais , Encéfalo , Humanos , Mamíferos , Neuroglia
15.
Acta Neurochir (Wien) ; 162(2): 365-372, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31754847

RESUMO

BACKGROUND: Fluorescence in the ventricular wall or the ependyma during fluorescence-guided resection (FGR) of malignant glioma is commonly observed when malignant gliomas infiltrate the ventricles. However, the underlying pathophysiology and clinical importance are largely unknown but may play a role in deciding whether to continue resection into the ventricles or not. Here, we systematically review available data regarding ependymal fluorescence in FGR using five aminolevulinic acid (5-ALA) and sodium fluorescein (SF). METHODS: A literature search on MEDLINE, EMBASE, and WEB OF SCIENCE was performed using the following headings and search operators: ependy* fluorescence AND (5-ALA OR five aminolevulinic acid), ventric* wall fluorescence AND (5-ALA OR five aminolevulinic acid), ependy* fluorescence AND fluorescein, and ventric* wall fluorescence AND fluorescein. Both authors analyzed abstracts independently. Included articles were further reviewed for prevalence of ependymal fluorescence, patterns of fluorescence, and histopathological characteristics of sampled tissues as well as radiological signs of ependymal fluorescence. Results are reported according to the PRISMA statement. RESULTS: Of 202 records identified, 6 studies were included compiling a total number of 198 patients treated with FGR using 5-ALA. No study on ependymal fluorescence after administration of SF was found. Overall prevalence of ependymal fluorescence was 61.4%. A total of 54.5% of cases were found to be positive for tumor cells. A total of 25.5% of patients with ependymal fluorescence were related to contrast enhancement in ventricular walls. CONCLUSIONS: The phenomenon of ventricular wall fluorescence in 5-ALA-derived fluorescence-guided resection of malignant glioma is poorly understood and not always may fluorescence represent tumor infiltration. A larger scale prospective sampling study with molecular analyses is currently ongoing and will hopefully provide further insight into pathophysiology and clinical implications of ependymal fluorescence.


Assuntos
Neoplasias Encefálicas/cirurgia , Epêndima/cirurgia , Glioma/cirurgia , Cirurgia Assistida por Computador/métodos , Ácido Aminolevulínico , Fluoresceína , Fluorescência , Corantes Fluorescentes , Humanos , Fármacos Fotossensibilizantes
16.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153042

RESUMO

Progressive forms of multiple sclerosis (MS) are associated with chronic demyelination, axonal loss, neurodegeneration, cortical and deep gray matter damage, and atrophy. These changes are strictly associated with compartmentalized sustained inflammation within the brain parenchyma, the leptomeninges, and the cerebrospinal fluid. In progressive MS, molecular mechanisms underlying active demyelination differ from processes that drive neurodegeneration at cortical and subcortical locations. The widespread pattern of neurodegeneration is consistent with mechanisms associated with the inflammatory molecular load of the cerebrospinal fluid. This is at variance with gray matter demyelination that typically occurs at focal subpial sites, in the proximity of ectopic meningeal lymphoid follicles. Accordingly, it is possible that variations in the extent and location of neurodegeneration may be accounted for by individual differences in CSF flow, and by the composition of soluble inflammatory factors and their clearance. In addition, "double hit" damage may occur at sites allowing a bidirectional exchange between interstitial fluid and CSF, such as the Virchow-Robin spaces and the periventricular ependymal barrier. An important aspect of CSF inflammation and deep gray matter damage in MS involves dysfunction of the blood-cerebrospinal fluid barrier and inflammation in the choroid plexus. Here, we provide a comprehensive review on the role of intrathecal inflammation compartmentalized to CNS and non-neural tissues in progressive MS.


Assuntos
Barreira Hematoencefálica/patologia , Plexo Corióideo/patologia , Inflamação/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Barreira Hematoencefálica/imunologia , Plexo Corióideo/imunologia , Progressão da Doença , Humanos , Inflamação/etiologia , Inflamação/patologia , Esclerose Múltipla Crônica Progressiva/patologia
17.
Development ; 143(5): 880-91, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26839365

RESUMO

Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Neurônios/citologia , Medula Espinal/embriologia , Medula Espinal/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Eletrofisiologia , Proteínas do Olho/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fator de Transcrição GATA2/genética , Genótipo , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/citologia , Camundongos , Neurônios Motores/citologia , Células-Tronco/citologia
18.
Mol Cell Neurosci ; 77: 47-52, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27751903

RESUMO

There is a constitutive production of water in brain. The efflux routes of this excess water remain to be identified. We used basal brain water content as a proxy for the capacity of water exit routes. Basal brain water content was increased in mice with a complete loss of aquaporin-4 (AQP4) water channels (global Aqp4-/- mice), but not in mice with a selective removal of perivascular AQP4 or in a novel mouse line with a selective deletion of ependymal AQP4 (Foxj1-Cre:Aqp4flox/flox mice). Unique for the global Aqp4-/- mice is the loss of the AQP4 pool subjacent to the pial membrane. Our data suggest that water accumulates in brain when subpial AQP4 is missing, pointing to a critical role of this pool of water channels in brain water exit.


Assuntos
Aquaporina 4/metabolismo , Epêndima/metabolismo , Animais , Aquaporina 4/genética , Astrócitos/metabolismo , Epêndima/citologia , Células Ependimogliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Água/metabolismo
19.
Adv Exp Med Biol ; 1015: 241-264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080030

RESUMO

Traumatic injury of the spinal cord leads to devastating conditions that affect ~2.5 million people worldwide. This is because the mammalian spinal cord reacts to injury with only limited endogenous repair. Functional restoration requires the replacement of lost cells, the growth and navigation of regenerating axons on a permissive scaffold and axon re-myelination. The manipulation of endogenous spinal stem cells is regarded as a potential strategy to restore function. For this type of therapy it is necessary to determine the molecular and functional mechanisms regulating the proliferation, migration and differentiation of adult spinal progenitors. The spinal cord of animal models in which self-repair normally occurs may provide some clues. Salamanders, some fish and turtles regenerate their spinal cord after massive injury, achieving substantial functional recovery. This regeneration is orchestrated by progenitors that line the central canal (CC). Although mammals have lost the ability for self-repair, some cells in the CC react to injury by proliferating and migrating toward the lesion, where most become astrocytes in the core of the scar. Thus, CC-contacting progenitors in mammals have "latent" programs for endogenous repair of the spinal cord. Progenitor-like cells in the CC are functionally organized in lateral and midline domains, with heterogeneous molecular and membrane properties that represent targets for modulation. Understanding the mechanisms by which CC-can be manipulated will give valuable clues for endogenous spinal cord repair leading to successful functional recovery.


Assuntos
Epêndima/citologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Epêndima/fisiopatologia , Neurônios/citologia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia
20.
Purinergic Signal ; 12(2): 331-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26988236

RESUMO

The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca(2+) imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1-P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current-voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca(2+) waves in RG that were triggered by Ca(2+) influx and propagated via Ca(2+) release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca(2+) signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.


Assuntos
Células-Tronco Neurais/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Trifosfato de Adenosina/toxicidade , Animais , Animais Recém-Nascidos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Células-Tronco Neurais/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa