Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Mol Cell ; 70(6): 995-1007.e11, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910111

RESUMO

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


Assuntos
Receptores Proteína Tirosina Quinases/fisiologia , Receptor EphA4/metabolismo , Domínios de Homologia de src/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Comunicação Celular , Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Proteínas Oncogênicas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tirosina/metabolismo
2.
Cell Mol Life Sci ; 81(1): 159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558087

RESUMO

Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.


Assuntos
Artrite Experimental , Animais , Camundongos , Colágeno , Colágeno Tipo II , Epitélio , Timo , Receptor EphB3/metabolismo
3.
Genes Dev ; 31(10): 1054-1065, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28637694

RESUMO

Proper function of the neural network results from the precise connections between axons and dendrites of presynaptic and postsynaptic neurons, respectively. In the Drosophila olfactory system, the dendrites of projection neurons (PNs) stereotypically target one of ∼50 glomeruli in the antennal lobe (AL), the primary olfactory center in the brain, and form synapses with the axons of olfactory receptor neurons (ORNs). Here, we show that Eph and Ephrin, the well-known axon guidance molecules, instruct the dendrodendritic segregation during the discrete olfactory map formation. The Eph receptor tyrosine kinase is highly expressed and localized in the glomeruli related to reproductive behavior in the developing AL. In one of the pheromone-sensing glomeruli (DA1), the Eph cell-autonomously regulates its dendrites to reside in a single glomerulus by interacting with Ephrins expressed in adjacent PN dendrites. Our data demonstrate that the trans interaction between dendritic Eph and Ephrin is essential for the PN dendritic boundary formation in the DA1 olfactory circuit, potentially enabling strict segregation of odor detection between pheromones and the other odors.


Assuntos
Drosophila melanogaster/fisiologia , Receptor EphA1/metabolismo , Animais , Dendritos/enzimologia , Dendritos/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/enzimologia , Neurônios Receptores Olfatórios/fisiologia , Interferência de RNA , Receptor EphA1/genética
4.
Biochem Biophys Res Commun ; 720: 150072, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749187

RESUMO

The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.


Assuntos
Ritmo Circadiano , Efrinas , Corpos Pedunculados , Neuroglia , Neurônios , Transdução de Sinais , Sono , Animais , Neuroglia/metabolismo , Sono/fisiologia , Sono/genética , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Efrinas/metabolismo , Efrinas/genética , Corpos Pedunculados/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores da Família Eph/metabolismo , Receptores da Família Eph/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Drosophila melanogaster/genética , Drosophila/metabolismo
5.
J Virol ; 97(11): e0062123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37931130

RESUMO

IMPORTANCE: Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.


Assuntos
Efrina-B2 , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Efrina-B2/genética , Efrina-B2/metabolismo , Glicoproteínas/metabolismo , Ligantes , Proteínas Virais/metabolismo
6.
Clin Genet ; 105(4): 386-396, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38151336

RESUMO

Variants in EPHB4 (Ephrin type B receptor 4), a transmembrane tyrosine kinase receptor, have been identified in individuals with various vascular anomalies including Capillary Malformation-Arteriovenous Malformation syndrome 2 and lymphatic-related (non-immune) fetal hydrops (LRHF). Here, we identify two novel variants in EPHB4 that disrupt the SAM domain in two unrelated individuals. Proband 1 presented within the LRHF phenotypic spectrum with hydrops, and proband 2 presented with large nuchal translucency prenatally that spontaneously resolved in addition to dysmorphic features on exam postnatally. These are the first disease associated variants identified that do not disrupt EPHB4 protein expression or tyrosine-kinase activity. We identify that EPHB4 SAM domain disruptions can lead to aberrant downstream signaling, with a loss of the SAM domain resulting in elevated MAPK signaling in proband 1, and a missense variant within the SAM domain resulting in increased cell proliferation in proband 2. This data highlights that a functional SAM domain is required for proper EPHB4 function and vascular development.


Assuntos
Hidropisia Fetal , Motivo Estéril alfa , Feminino , Humanos , Hidropisia Fetal/diagnóstico por imagem , Hidropisia Fetal/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Receptor EphB4/genética , Receptor EphB4/metabolismo
7.
Microb Pathog ; 191: 106673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705218

RESUMO

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Assuntos
Proteases Virais 3C , Autofagia , Picornaviridae , Receptor EphA2 , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Virais , Replicação Viral , Animais , Receptor EphA2/metabolismo , Receptor EphA2/genética , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Suínos , Picornaviridae/fisiologia , Picornaviridae/genética , Proteases Virais 3C/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Proteólise , Cricetinae , Interações Hospedeiro-Patógeno , Carga Viral
8.
Cell Commun Signal ; 22(1): 299, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811954

RESUMO

Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.


Assuntos
Neoplasias , Neovascularização Patológica , Receptores da Família Eph , Transdução de Sinais , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/imunologia , Neovascularização Patológica/metabolismo , Receptores da Família Eph/metabolismo , Animais , Progressão da Doença , Imunidade , Angiogênese
9.
Cereb Cortex ; 33(5): 1752-1767, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35462405

RESUMO

Abnormal development of corpus callosum is relatively common and causes a broad spectrum of cognitive impairments in humans. We use acallosal Neurod2/6-deficient mice to study callosal axon guidance within the ipsilateral cerebral cortex. Initial callosal tracts form but fail to traverse the ipsilateral cingulum and are not attracted towards the midline in the absence of Neurod2/6. We show that the restoration of Ephrin-A4 (EfnA4) expression in the embryonic neocortex of Neurod2/6-deficient embryos is sufficient to partially rescue targeted callosal axon growth towards the midline. EfnA4 cannot directly mediate reverse signaling within outgrowing axons, but it forms co-receptor complexes with TrkB (Ntrk2). The ability of EfnA4 to rescue the guided growth of a subset of callosal axons in Neurod2/6-deficient mice is abolished by the co-expression of dominant negative TrkBK571N (kinase-dead) or TrkBY515F (SHC-binding deficient) variants, but not by TrkBY816F (PLCγ1-binding deficient). Additionally, EphA4 is repulsive to EfnA4-positive medially projecting axons in organotypic brain slice culture. Collectively, we suggest that EfnA4-mediated reverse signaling acts via TrkB-SHC and is required for ipsilateral callosal axon growth accuracy towards the midline downstream of Neurod family factors.


Assuntos
Neocórtex , Neuropeptídeos , Camundongos , Animais , Humanos , Corpo Caloso/metabolismo , Axônios/fisiologia , Neocórtex/metabolismo , Fibras Nervosas , Fosfotransferases/metabolismo , Neuropeptídeos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
10.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612645

RESUMO

Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.


Assuntos
Relevância Clínica , Neoplasias Hematológicas , Humanos , Criança , Transdução de Sinais , Comunicação Celular , Carcinogênese , Efrinas , Receptores da Eritropoetina , Microambiente Tumoral
11.
Am J Physiol Cell Physiol ; 324(3): C718-C727, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717102

RESUMO

Individual limb muscles have characteristic representation and spatial distribution of muscle fiber types (one slow and up to three fast isoforms) appropriate to their unique anatomical location and function. This distribution can be altered by physiological stimuli such as training (i.e., for increased endurance or force) or pathological conditions such as aging. Our group previously showed that ephrin-A3 is expressed only on slow myofibers, and that adult mice lacking ephrin-A3 have dramatically reduced numbers of slow myofibers due to postnatal innervation of previously slow myofibers by fast motor neurons. In this study, fiber type composition of hindlimb muscles of aged and denervated/reinnervated C57BL/6 and ephrin-A3-/- mice was analyzed to determine whether the loss of slow myofibers persists across the lifespan. Surprisingly, fiber-type composition of ephrin-A3-/- mouse muscles at two years of age was nearly indistinguishable from age-matched C57BL/6 mice. After challenge with nerve crush, the percentage of IIa and I/IIa hybrid myofibers increased significantly in aged ephrin-A3-/- mice. While EphA8, the receptor for ephrin-A3, is present at all neuromuscular junctions (NMJs) on fast fibers in 3-6 mo old C57BL/6 and ephrin-A3-/- mice, this exclusive localization is lost with aging, with EphA8 expression now found on a subset of NMJs on some slow muscle fibers. This return to appropriate fiber-type distribution given time and under use reinforces the role of activity in determining fiber-type representation and suggests that, rather than being a passive baseline, the developmentally and evolutionarily selected fiber type pattern may instead be actively reinforced by daily living.


Assuntos
Efrina-A3 , Fibras Musculares Esqueléticas , Camundongos , Animais , Efrina-A3/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Junção Neuromuscular
12.
Dev Biol ; 490: 73-85, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868403

RESUMO

In the primitive vertebrate gastrula, the boundary between ectoderm and mesoderm is formed by Brachet's cleft. Here we examine Brachet's cleft and its control by Eph/ephrin signaling in Xenopus at the ultrastructural level and by visualizing cortical F-actin. We infer cortical tension ratios at tissue surfaces and their interface in normal gastrulae and after depletion of receptors EphB4 and EphA4 and ligands ephrinB2 and ephrinB3. We find that cortical tension downregulation at cell contacts, a normal process in adhesion, is asymmetrically blocked in the ectoderm by Eph/ephrin signals from the mesoderm. This generates high interfacial tension that can prevent cell mixing across the boundary. Moreover, it determines an asymmetric boundary structure that is suited for the respective roles of ectoderm and mesoderm, as substratum and as migratory layers. The Eph and ephrin isoforms also control different cell-cell contact types in ectoderm and mesoderm. Respective changes of adhesion upon isoform depletion affect adhesion at the boundary to different degrees but usually do not prohibit cleft formation. In an extreme case, a new type of cleft-like boundary is even generated where cortical tension is symmetrically increased on both sides of the boundary.


Assuntos
Efrinas , Gástrula , Animais , Ectoderma/metabolismo , Efrinas/metabolismo , Gástrula/metabolismo , Mesoderma/metabolismo , Xenopus laevis/metabolismo
13.
J Neuroinflammation ; 20(1): 256, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941008

RESUMO

BACKGROUND: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS: We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS: Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS: Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.


Assuntos
Orientação de Axônios , Lesões Encefálicas , Camundongos , Animais , c-Mer Tirosina Quinase/metabolismo , Apoptose , Fagocitose/fisiologia , Camundongos Knockout , RNA Mensageiro , Fator de Transcrição STAT6/metabolismo
14.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36799129

RESUMO

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Assuntos
Neoplasias Colorretais , Pirazóis , Humanos , Pirazóis/química , Pirimidinas/farmacologia , Pirimidinas/química , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
15.
FASEB J ; 36(1): e22076, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856019

RESUMO

A distinct boundary exists between the progenitor cells in the basal limbal epithelium and the more differentiated corneal epithelial basal cells. We have shown that reciprocal expression patterns of EphA2 and Ephrin-A1 are likely to contribute to normal limbal-corneal epithelial compartmentalization as well as play a role in response to injury. How this signaling axis is regulated remains unclear. We have demonstrated that microRNAs (miRNAs) play critical roles in corneal epithelial wound healing and several miRNAs (e.g. miR-210) have been predicted to target ephrins. Previous expression profiling experiments demonstrated that miR-210 is prominently expressed in corneal epithelial cells. RNA-seq data acquired from miR-210-depleted HCECs showed up-regulation of genes involved in cellular migration. In addition, miR-210 is decreased after corneal injury while EphA2 is increased. Moreover, antago-210-treated HCECs markedly enhanced wound closure in a scratch wound assay. Antago-210 treatment resulted in increased EphA2 protein levels as well as pS897-EphA2, the pro-migratory form of EphA2. As expected, Ephrin-A1 levels were reduced, while levels of a well-known target of miR-210, Ephrin-A3, were increased by antago-210 treatment. The increase in migration with antago-210 could be inhibited by Ephrin-A1 overexpression, Ephrin-A1-Fc treatment or siRNA depletion of EphA2. However, depletion of Ephrin-A3 did not have effects on the antago-210-induced increase in migration. In addition, Ephrin-A1 overexpression and siEphA2 dampened EGFR signaling, which is increased by antago-210. Our data clearly demonstrate a link between miR-210 and EphA2/Ephrin-A1 signaling that regulates, in part, corneal epithelial migration. This interaction might potentially control the limbal-corneal epithelial boundary.


Assuntos
Movimento Celular , Córnea/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Receptores da Família Eph/metabolismo , Humanos , MicroRNAs/genética , RNA-Seq , Receptores da Família Eph/genética
16.
Mol Pharm ; 20(12): 6066-6078, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37906960

RESUMO

Erythropoietin-producing hepatocellular (Eph) receptors and their ligands, ephrins, are the largest subfamily of receptor tyrosine kinases (RTKs) that have emerged as a new class of cancer biomarkers due to their aberrant expression in cancer progression. The activation of Eph receptors either due to their hyperexpression or via high affinity binding with their respective ephrin ligands initiates a cascade of signals that impacts cancer development and progression. In prostate cancer, the overexpression of the EphA6 receptor has been correlated with increased metastatic potential. Azurin, a small redox protein, is known to prevent tumor progression by binding to cell surface Eph receptors, inhibiting its autophosphorylation in the kinase domain and thereby disrupting Eph-ephrin signaling. Hence, a self-assembled, theranostic nanosystem of recombinant fusion protein his6EGFP-azu (80-128) was designed by conjugating enhanced green fluorescent protein (EGFP) with the C-terminal region of azurin. This design was inspired by the in silico binding study, where the analogue of ephrinA, his6EGFP-azu (80-128) showed higher binding affinity for the EphA6 receptor than the ephrinA ligands. The his6EGFP-azu (80-128) nanosystem which assembled as nanoparticles was tested for its ability to simultaneously detect and kill the prostate cancer cells, LNCaP. This was achieved by specifically targeting EphA6 receptors overexpressed on the cancer cell surface via C-terminal peptide, azu (80-128). Herein, we report antiproliferative, apoptotic, antimigratory, and anti-invasive effects of this nanosystem on LNCaP cells, while having no similar effects on EphA6 negative human normal lung cells, WI-38.


Assuntos
Azurina , Neoplasias da Próstata , Receptor EphA6 , Masculino , Humanos , Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Azurina/genética , Medicina de Precisão , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Efrinas/química , Efrinas/metabolismo
17.
Pharmacol Res ; 197: 106976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032293

RESUMO

The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.


Assuntos
Encéfalo , Qualidade de Vida , Humanos , Efrinas , Homeostase , Inflamação
18.
Cell Mol Life Sci ; 79(11): 583, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334147

RESUMO

Eph receptors and their ligands, Ephrins, are involved in the thymocyte-thymic epithelial cell (TEC) interactions, key for the functional maturation of both thymocytes and thymic epithelium. Several years ago, we reported that the lack of EphA4, a Eph of the subfamily A, coursed with reduced proportions of double positive (DP) thymocytes apparently due to an altered thymic epithelial stroma [Munoz et al. in J Immunol 177:804-813, 2006]. In the present study, we reevaluate the lymphoid, epithelial, and extracellular matrix (ECM) phenotype of EphA4-/- mice grouped into three categories with respect to their proportions of DP thymocytes. Our results demonstrate a profound hypocellularity, specific alterations of T cell differentiation that affected not only DP thymocytes, but also double negative and single positive T cell subsets, as well as the proportions of positively and negatively selected thymocytes. In correlation, thymic histological organization changed markedly, especially in the cortex, as well as the proportions of both Ly51+UEA-1- cortical TECs and Ly51-UEA-1+ medullary TECs. The alterations observed in the expression of ECM components (Fibronectin, Laminin, Collagen IV), integrin receptors (VLA-4, VLA-6), chemokines (CXCL12, CCL25, CCL21) and their receptors (CXCR4, CCR7, CCR9) and in vitro transwell assays on the capacity of migration of WT and mutant thymocytes suggest that the lack of EphA4 alters T-cell differentiation by presumably affecting cell adhesion between TECs and T-TEC interactions rather than by thymocyte migration.


Assuntos
Timócitos , Timo , Camundongos , Animais , Timócitos/metabolismo , Timo/metabolismo , Ativação Linfocitária , Células Epiteliais/metabolismo , Diferenciação Celular , Receptores da Família Eph/metabolismo , Matriz Extracelular
19.
Oral Dis ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279081

RESUMO

Tyrosine kinase receptors (TKR) coordinate a variety of pathological processes in head and neck squamous cell carcinoma (HNSCC), and eventually play a role in patient outcomes. In this review, the role of Eph receptors in HNSCC progression and the possibility of targeting these receptors are illustrated. All relevant studies were identified through a comprehensive search of four electronic databases, including PubMed, Scopus, web of science, and Embase till August 2022. EphA2 and EphB4, along with ephrin-B2, were the most extensively studied proteins in this family. However, overexpression of EphB4 and its ligand ephrin-B2 were the only proteins that consistently showed association with a poor outcome, indicating that these proteins might serve as valuable prognostic markers in HNSCC. High expression of EphA3 and EphB4 was found to play a crucial role in radioresistance of HNSCC. EphB4 loss, in particular, was observed to induce an immunosuppression phenotypic HNSCC. Currently, ongoing clinical trials are investigating the benefits of EphB4-ephrin-B2 blockade in combination with standard of care treatment in HNSCC. Further efforts are needed to explore the biological role and behavioral complexity of this family of TKR in HNSCC with great attention to avoid heterogeneity of HNSCC subsites.

20.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769332

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown to exert bidirectional signaling and cell-to-cell communication, influencing cellular morphology, adhesion, migration and invasion. Recent studies have highlighted the critical role of the EPH/ephrin system in various physiologic processes, including cellular proliferation, survival, synaptic plasticity and angiogenesis. Thus, it has become evident that the EPH/ephrin signaling system may have compelling effects on cell homeostasis that contribute to carcinogenesis. In particular, the EPH/ephrins have an impact on pancreatic morphogenesis and development, whereas several EPHs and ephrins are altered in PDAC. Several clinical and preclinical studies have attempted to elucidate the effects of the EPH/ephrin pathway, with multilayered effects on PDAC development. These studies have highlighted its highly promising role in the diagnosis, prognosis and therapeutic management of PDAC. The aim of this review is to explore the obscure aspects of the EPH/ephrin system concerning the development, physiology and homeostasis of the pancreas.


Assuntos
Adenocarcinoma , Efrinas , Humanos , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia , Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa