RESUMO
Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.
Assuntos
Artrite Experimental , Animais , Camundongos , Colágeno , Colágeno Tipo II , Epitélio , Timo , Receptor EphB3/metabolismoRESUMO
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Assuntos
Neoplasias , Neovascularização Patológica , Receptores da Família Eph , Transdução de Sinais , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/imunologia , Neovascularização Patológica/metabolismo , Receptores da Família Eph/metabolismo , Animais , Progressão da Doença , Imunidade , AngiogêneseRESUMO
Individual limb muscles have characteristic representation and spatial distribution of muscle fiber types (one slow and up to three fast isoforms) appropriate to their unique anatomical location and function. This distribution can be altered by physiological stimuli such as training (i.e., for increased endurance or force) or pathological conditions such as aging. Our group previously showed that ephrin-A3 is expressed only on slow myofibers, and that adult mice lacking ephrin-A3 have dramatically reduced numbers of slow myofibers due to postnatal innervation of previously slow myofibers by fast motor neurons. In this study, fiber type composition of hindlimb muscles of aged and denervated/reinnervated C57BL/6 and ephrin-A3-/- mice was analyzed to determine whether the loss of slow myofibers persists across the lifespan. Surprisingly, fiber-type composition of ephrin-A3-/- mouse muscles at two years of age was nearly indistinguishable from age-matched C57BL/6 mice. After challenge with nerve crush, the percentage of IIa and I/IIa hybrid myofibers increased significantly in aged ephrin-A3-/- mice. While EphA8, the receptor for ephrin-A3, is present at all neuromuscular junctions (NMJs) on fast fibers in 3-6 mo old C57BL/6 and ephrin-A3-/- mice, this exclusive localization is lost with aging, with EphA8 expression now found on a subset of NMJs on some slow muscle fibers. This return to appropriate fiber-type distribution given time and under use reinforces the role of activity in determining fiber-type representation and suggests that, rather than being a passive baseline, the developmentally and evolutionarily selected fiber type pattern may instead be actively reinforced by daily living.
Assuntos
Efrina-A3 , Fibras Musculares Esqueléticas , Camundongos , Animais , Efrina-A3/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Junção NeuromuscularRESUMO
A distinct boundary exists between the progenitor cells in the basal limbal epithelium and the more differentiated corneal epithelial basal cells. We have shown that reciprocal expression patterns of EphA2 and Ephrin-A1 are likely to contribute to normal limbal-corneal epithelial compartmentalization as well as play a role in response to injury. How this signaling axis is regulated remains unclear. We have demonstrated that microRNAs (miRNAs) play critical roles in corneal epithelial wound healing and several miRNAs (e.g. miR-210) have been predicted to target ephrins. Previous expression profiling experiments demonstrated that miR-210 is prominently expressed in corneal epithelial cells. RNA-seq data acquired from miR-210-depleted HCECs showed up-regulation of genes involved in cellular migration. In addition, miR-210 is decreased after corneal injury while EphA2 is increased. Moreover, antago-210-treated HCECs markedly enhanced wound closure in a scratch wound assay. Antago-210 treatment resulted in increased EphA2 protein levels as well as pS897-EphA2, the pro-migratory form of EphA2. As expected, Ephrin-A1 levels were reduced, while levels of a well-known target of miR-210, Ephrin-A3, were increased by antago-210 treatment. The increase in migration with antago-210 could be inhibited by Ephrin-A1 overexpression, Ephrin-A1-Fc treatment or siRNA depletion of EphA2. However, depletion of Ephrin-A3 did not have effects on the antago-210-induced increase in migration. In addition, Ephrin-A1 overexpression and siEphA2 dampened EGFR signaling, which is increased by antago-210. Our data clearly demonstrate a link between miR-210 and EphA2/Ephrin-A1 signaling that regulates, in part, corneal epithelial migration. This interaction might potentially control the limbal-corneal epithelial boundary.
Assuntos
Movimento Celular , Córnea/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Receptores da Família Eph/metabolismo , Humanos , MicroRNAs/genética , RNA-Seq , Receptores da Família Eph/genéticaRESUMO
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Assuntos
Encéfalo , Qualidade de Vida , Humanos , Efrinas , Homeostase , InflamaçãoRESUMO
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease placing a great burden on people living with it, carers and society. Yet, the underlying patho-mechanisms remain unknown and treatments limited. To better understand the molecular changes associated with AD, genome-wide association studies (GWAS) have identified hundreds of candidate genes linked to the disease, like the receptor tyrosine kinase EphA1. However, demonstration of whether and how these genes cause pathology is largely lacking. Here, utilising fly genetics, we generated the first Drosophila model of human wild-type and P460L mutant EphA1 and tested the effects of Eph/ephrin signalling on AD-relevant behaviour and neurophysiology. We show that EphA1 mis-expression did not cause neurodegeneration, shorten lifespan or affect memory but flies mis-expressing the wild-type or mutant receptor were hyper-aroused, had reduced sleep, a stronger circadian rhythm and increased clock neuron activity and excitability. Over-expression of endogenous fly Eph and RNAi-mediated knock-down of Eph and its ligand ephrin affected sleep architecture and neurophysiology. Eph over-expression led to stronger circadian morning anticipation while ephrin knock-down impaired memory. A dominant negative form of the GTPase Rho1, a potential intracellular effector of Eph, led to hyper-aroused flies, memory impairment, less anticipatory behaviour and neurophysiological changes. Our results demonstrate a role of Eph/ephrin signalling in a range of behaviours affected in AD. This presents a starting point for studies into the underlying mechanisms of AD including interactions with other AD-associated genes, like Rho1, Ankyrin, Tau and APP with the potential to identify new targets for treatment.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Animais , Drosophila , Efrinas/genética , Estudo de Associação Genômica Ampla , Humanos , Neurofisiologia , Receptores da Família Eph/genéticaRESUMO
In the Central Nervous System (CNS) there are some niches of undifferentiated, neural progenitor/stem cells that produce active neurogenesis originating functionally integrated neurons. In the chicken eye, there is a neurogenic niche in the ciliary margin (CM) which has the ability to originate all the cell types of the neural retina. During retinal development, cells acquire positional values along the radial and tangential axes. These positional values are the necessary base for the formation of neural circuits. In this work, we have analyzed whether neural progenitor cells (NPCs) of CM have positional values regarding the radial and tangential axes, and if they have the potential to differentiate into retinal ganglion cells (RGCs) in vitro. Furthermore, we analyzed whether these RGCs preserve positional values along the tangential axis and respond to the Eph/ephrin axon guidance system. In order to answer these questions, we cultured NPCs obtained from the CM favoring the formation of neurospheres. Our results showed that the expanding neurospheres are polarized structures in which their cells have specific positional values along their radial axis, recapitulating the apical-basal polarity of the CM and the neuroepithelium. We also showed that NPCs obtained from CM possess positional values along the nasal-temporal retinal axis. When the neurospheres were submitted to differentiation conditions, we observed that NPCs can differentiate into RGCs. These RGCs present long axons that express different members of the Eph/ephrin system and they are competent to respond to this axon guidance cue system, recapitulating the axonal behavior during retinotectal neural map development. All these findings contribute to understand the cellular and molecular mechanisms involved in CNS development and regeneration.
Assuntos
Galinhas , Células Ganglionares da Retina , Animais , Axônios/metabolismo , Efrinas/metabolismo , Proteínas/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Colículos Superiores/metabolismoRESUMO
OBJECTIVES: The aim of this study is to investigate the underlying mechanism of the recovery of periodontal ligament cells (PDLCs) sequentially exposed to inflammation and mechanical loading. MATERIALS AND METHODS: We divided PDLCs into four groups: control; compressive force (CF) alone (2.0 g/cm2 ); lipopolysaccharides (LPS) pretreatment (0.1 µg/ml) followed by simultaneous LPS and CF stimulation, simulating uncontrolled periodontitis; and LPS pretreatment followed by CF exposure, simulating controlled periodontitis. The expression of EphB4-ephrinB2 and EphA2-ephrinA2, and the level of osteoclastogenesis and osteogenesis were evaluated. RESULTS: Simultaneous stimulation by LPS and CF, compared with CF alone and sequential LPS and CF exposure, significantly suppressed EphB4 and enhanced ephrinA2 expression. Similarly, the most intense osteoclastic differentiation was observed under simultaneous LPS and CF stimulation, while sequential exposure to LPS and CF only slightly increased osteoclastic cell numbers. Both the activation of EphB4 signaling and ephrinA2 silencing lowered osteoclastic differentiation, which had previously been upregulated by simultaneous LPS and CF stimulation. These treatments also increased osteogenic differentiation. CONCLUSIONS: Simultaneous LPS and CF stimulation critically enhances osteoclastogenesis in PDLCs through the suppression of EphB4 and the induction of ephrinA2 signaling. Sequential LPS and CF exposure partially abolishes the osteolytic effects of simultaneous stimulation.
Assuntos
Ligamento Periodontal , Periodontite , Diferenciação Celular , Células Cultivadas , Efrinas/metabolismo , Efrinas/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Osteogênese , Periodontite/metabolismoRESUMO
Defective anorectal and urogenital malformations are some of the most severe congenital anomalies encountered in children. Only a few molecular cues have been identified in early formation of the female urogenital system. Here we describe a novel long non-coding RNA molecule known as Leat1 (long non-coding RNA, EphrinB2 associated transcript 1). This lncRNA is syntenic with EfnB2 (which encodes EphrinB2) and expressed during embryonic development of the genital tubercle. While lncRNAs have varied functions, many are known to regulate their neighbouring genes. Eph/Ephrin bidirectional signaling molecules mediate many patterning pathways in early embryonic development, including cloacal septation and urethral development. Here we investigate the role of Leat1 and its possible regulation of EphrinB2 during development of the female reproductive tract. We show that a loss of Leat1 leads to reduced EfnB2 expression in the developing female genital tubercle, reduced anogenital distance and decreased fertility.
Assuntos
Efrina-B2/genética , Organogênese/genética , RNA Longo não Codificante/genética , Anormalidades Urogenitais/genética , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , CamundongosRESUMO
BACKGROUND: During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity are only partially understood. RESULTS: Here, we show that ephrin-B2, a member of the Eph:ephrin cell-to-cell communication pathway, sets the neurogenic tempo in the neocortex. Indeed, conditional mutant embryos for ephrin-B2 exhibit a transient delay in neurogenesis and acute stimulation of Eph signaling by in utero injection of synthetic ephrin-B2 led to a transient increase in neuronal production. Using genetic approaches we show that ephrin-B2 acts on neural progenitors to control their differentiation in a juxtacrine manner. Unexpectedly, we observed that perinatal neuron numbers recovered following both loss and gain of ephrin-B2, highlighting the ability of neural progenitors to adapt their behavior to the state of the system in order to produce stereotypical numbers of neurons. CONCLUSIONS: Altogether, our data uncover a role for ephrin-B2 in embryonic neurogenesis and emphasize the plasticity of neuronal production in the neocortex.
Assuntos
Efrina-B2/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Efrina-B2/genética , Feminino , Imunofluorescência , Masculino , Camundongos , Neurogênese/genética , Neurogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Assuntos
Células Endoteliais/metabolismo , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Adulto , Células Endoteliais/citologia , Hemodinâmica , Homeostase , Humanos , Transdução de SinaisRESUMO
To explore roles for ephrin-B/EphB signaling in cortical interneurons, we previously generated ephrin-B (Efnb1/b2/b3) conditional triple mutant (TMlz ) mice using a Dlx1/2.Cre inhibitory neuron driver and green fluorescent protein (GFP) reporters for the two main inhibitory interneuron groups distinguished by expression of either glutamic acid decarboxylase 1 (GAD1; GAD67-GFP) or 2 (GAD2; GAD65-GFP). This work showed a general involvement of ephrin-B in migration and population of interneurons into the embryonic neocortex. We now determined whether specific interneurons are selectively affected in the adult brains of TMlz .Cre mice by immunostaining with antibodies that identify the different subtypes. The results indicate that GAD67-GFP-expressing interneurons that also express parvalbumin (PV), calretinin (CR) and, to a lesser extent, somatostatin (SST) and Reelin (Rln) were significantly reduced in the cortex and hippocampal CA1 region in TMlz .Cre mutant mice. Neuropeptide Y (NPY) interneurons that also express GAD67-GFP were reduced in the hippocampal CA1 region, but much less so in the cortex, although these cells exhibited abnormal cortical layering. In GAD65-GFP-expressing interneurons, CR subtypes were reduced in both cortex and hippocampal CA1 region, whereas Rln interneurons were reduced exclusively in hippocampus, and the numbers of NPY and vasoactive intestinal polypeptide (VIP) subtypes appeared normal. PV and CR subtype interneurons in TMlz .Cre mice also exhibited reductions in their perisomatic area, suggesting abnormalities in dendritic/axonal complexity. Altogether, our data indicate that ephrin-B expression within forebrain interneurons is required in specific subtypes for their normal population, cortical layering and elaboration of cell processes.
Assuntos
Região CA1 Hipocampal/citologia , Movimento Celular/fisiologia , Efrinas/fisiologia , Neurônios GABAérgicos , Interneurônios , Córtex Somatossensorial/citologia , Animais , Contagem de Células , Efrinas/deficiência , Feminino , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína ReelinaRESUMO
Branching morphogenesis depends on the precise temporal and spatial control of epithelial dynamics. In the vertebrate head, endodermal branches, called pharyngeal pouches, form through the transient stratification, collective migration and reorganization of epithelial cells into bilayers. Here, we report novel requirements for the EphrinB ligands B2a and B3b, the Ephb4a receptor and the Pak2a kinase in the development of pouches and the posterior facial skeleton that depends on pouches for its segmentation. Time-lapse imaging in zebrafish shows that EphB-Pak2a signaling is required to stabilize pouch epithelial cells at the end of branching morphogenesis. Transgenic rescue experiments further demonstrate that endodermal Eph-ephrin signaling promotes pouch integrity by targeting Pak2a to the plasma membrane, where subsequent activation by Wnt4a-Cdc42 signaling increases junctional E-cadherin in maturing pouches. Integration of Eph-ephrin and Wnt4a signaling through Pak2a thus signals the end of branching morphogenesis by increasing intercellular adhesion that blocks further epithelial rearrangements.
Assuntos
Região Branquial/embriologia , Células Epiteliais/fisiologia , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor EphB4/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Microscopia Confocal , Morfolinos/genética , Transdução de Sinais/genética , Imagem com Lapso de TempoRESUMO
The objective of this study was to ascertain whether mRNA and protein expressions of implantation-related genes (erythropoietin-producing hepatocellular receptor-ligand A1, Eph-ephrin A1 and leptin receptor-leptin, LEPR-LEP) differed between pigs with high and low number of embryos, and whether these differences in gene expression might affect embryo implantation. Experimental pig groups (n = 24) for high and low number of embryos were prepared by altering the number of eggs ovulated in pre-pubertal gilts treated with 1.5 × (High) or 1.0 × (Low) PG600 ([400 IU PMSG + 200 IU hCG]/dose, AKZO-NOBEL). Gilts expressing oestrus were artificially inseminated twice and maintained in breeding and gestation until the reproductive tract was collected on day 22 of pregnancy. At slaughter, the reproductive tracts from each pregnant gilt from each treatment were immediately processed to collect samples for RNA and protein analysis. Within each gilt, three conceptus points were sampled, one from each horn and then a random conceptus within the tract. At each conceptus point, endometrial attachment site, chorion-allantois and embryo were collected and immediately frozen in liquid nitrogen. Number of corpus luteum (CL) (35.4 vs. 12.6) and total embryo number (18.8 vs. 10.2) were greater in the high-embryo compared to the low-embryo group, respectively (p < .05). Real-time qPCR results showed that Eph-ephrin A1 mRNA expression was less in the high-embryo (p < .05) compared to the low-embryo group. In addition, Western blotting analysis indicated that Eph-ephrin A1 and LEP protein expression at endometrial attachment site in high-embryo was less (p < .05) compared to low-embryo group. It was also noted that mRNA expression of Eph-ephrin A1 and LEPR-LEP was greater in pregnant than non-pregnant gilts (p < .05). Moreover, mRNA expression of Eph-ephrin A1 (p < .05) and LEPR-LEP was greatest at endometrial attachment site among all three tissues. There was a positive correlation between expressions of Eph-ephrin A1, LEPR-LEP and embryo length with the correlation coefficient 0.31-0.59. For Eph-ephrin A1, the highest correlation coefficient appeared between Eph A1 expression and normal embryo number, between ephrin A1 expression and embryo length. For LEPR-LEP, the highest correlation coefficient appeared between LEPR-LEP expression and ovary weight (0.79 for both, p < .05), followed by embryo length and weight. The results of this study suggest that low expression of Eph-ephrin A1 and LEPR-LEP is somehow related to increased embryo number during implantation and that endometrial attachment site might be the main target tissue of these gene products. Yet, the increased expression of Eph-ephrin A1 and LEPR-LEP appeared associated with increased embryo growth (length and weight) and ovary weight, Eph-ephrin A1 and LEPR-LEP might play roles in the regulation of embryo implantation in pigs.
Assuntos
Efrina-A1/metabolismo , Leptina/metabolismo , Receptor EphA1/metabolismo , Receptores para Leptina/metabolismo , Suínos/embriologia , Animais , Implantação do Embrião/fisiologia , Efrina-A1/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Leptina/genética , Gravidez , RNA Mensageiro , Receptor EphA1/genética , Receptores para Leptina/genéticaRESUMO
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Glioma/metabolismo , HumanosRESUMO
Apical constriction typically accompanies inward folding of an epithelial sheet. In recent years there has been progress in understanding mechanisms of apical constriction and their contribution to morphogenetic processes. Sea urchin embryos form a specialized region of ectoderm, the ciliary band, which is a strip of epithelium, three to five cells wide, encircling the oral ectoderm and functioning in larval swimming and feeding. Ciliary band cells exhibit distinctive apical-basal elongation, have narrow apices bearing a cilium, and are planar polarized, so that cilia beat away from the mouth. Here, we show that filamentous actin and phosphorylated myosin light chain are uniquely distributed in ciliary band cells. Inhibition of myosin phosphorylation or actin polymerization perturbs this distribution and blocks apical constriction. During ciliary band formation, Sp-Ephrin and Sp-Eph expression overlap in the presumptive ciliary band. Knockdown of Sp-Eph or Sp-Ephrin, or treatment with an Eph kinase inhibitor interferes with actomyosin networks, accumulation of phosphorylated FAK (pY(397)FAK), and apical constriction. The cytoplasmic domain of Sp-Eph, fused to GST and containing a single amino acid substitution reported as kinase dead, will pull down pY(397)FAK from embryo lysates. As well, pY(397)FAK colocalizes with Sp-Eph in a JNK-dependent, planar polarized manner on latitudinal apical junctions of the ciliary band and this polarization is dissociable from apical constriction. We propose that Sp-Eph and pY(397)FAK function together in an apical complex that is necessary for remodeling actomyosin to produce centripetal forces causing apical constriction. Morphogenesis of ciliary band cells is a unique example of apical constriction in which receptor-mediated cell shape change produces a strip of specialized tissue without an accompanying folding of epithelium.
Assuntos
Actomiosina/metabolismo , Efrinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Receptores da Família Eph/metabolismo , Strongylocentrotus purpuratus/embriologia , Animais , Polaridade Celular/genética , Polaridade Celular/fisiologia , Embrião não Mamífero/metabolismo , Efrinas/genética , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Masculino , Morfogênese/genética , Morfogênese/fisiologia , Receptores da Família Eph/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Erythroprotein-producing human hepatocellular carcinoma receptors (Eph receptors) compose a subfamily of transmembrane protein-tyrosine kinases receptors that takes part in numerous physiological and pathological processes. Eph family receptor-interacting proteins (Ephrins) are ligands for those receptors. Eph/ephrin system is responsible for the cytoskeleton activity, cell adhesion, intercellular connection, cellular shape as well as cell motility. It affects neuron development and functioning, bone and glucose homeostasis, immune system and correct function of enterocytes. Moreover Eph/ephrin system is one of the crucial ones in angiogenesis and lymphangiogenesis. With such a wide range of impact it is clear that disturbed function of this system leads to pathology. Eph/ephrin system is involved in carcinogenesis and cancer progression. Although the idea of participation of ephrin in carcinogenesis is obvious, the exact way remains unclear because of complex bi-directional signaling and cross-talks with other pathways. Further studies are necessary to find a new target for treatment.
RESUMO
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice.
Assuntos
Orelha Interna/metabolismo , Saco Endolinfático/metabolismo , Efrina-B2/genética , Epitélio/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular/genética , Orelha Interna/embriologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Saco Endolinfático/embriologia , Saco Endolinfático/ultraestrutura , Efrina-B2/metabolismo , Epitélio/embriologia , Epitélio/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Varredura , Morfogênese/genética , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Fatores de TempoRESUMO
Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Efrinas/metabolismo , Receptor EphA1/metabolismo , Animais , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Transdução de SinaisRESUMO
The recent and extraordinary increase in computer power, along with the availability of efficient algorithms based on artificial intelligence, has prompted a large number of inexperienced scientists to challenge the complex and yet competitive world of drug discovery, by pretending to identify new hits through the sole use of computer aided drug design (CADD). Does the golden era of dry data run the risk of overshadowing the importance of wet data and, in doing so, forget that in silico and biological data need each other in successful preclinical drug discovery programmes?