RESUMO
Research on maternal-fetal epigenetic programming argues that adverse exposures to the intrauterine environment can have long-term effects on adult morbidity and mortality. However, causal research on epigenetic programming in humans at a population level is rare and is often unable to separate intrauterine effects from conditions in the postnatal period that may continue to impact child development. In this study, we used a quasi-natural experiment that leverages state-year variation in economic shocks during the Great Depression to examine the causal effect of environmental exposures in early life on late-life accelerated epigenetic aging for 832 participants in the US Health and Retirement Study (HRS). HRS is the first population-representative study to collect epigenome-wide DNA methylation data that has the sample size and geographic variation necessary to exploit quasi-random variation in state environments, which expands possibilities for causal research in epigenetics. Our findings suggest that exposure to changing economic conditions in the 1930s had lasting impacts on next-generation epigenetic aging signatures that were developed to predict mortality risk (GrimAge) and physiological decline (DunedinPoAm). We show that these effects are localized to the in utero period specifically as opposed to the preconception, postnatal, childhood, or early adolescent periods. After evaluating endogenous shifts in mortality and fertility related to Depression-era birth cohorts, we conclude that these effects likely represent lower bound estimates of the true impacts of the economic shock on long-term epigenetic aging.
Assuntos
Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal , Criança , Adulto , Feminino , Humanos , Adolescente , Efeitos Tardios da Exposição Pré-Natal/genética , Depressão , Epigenômica , Metilação de DNA , Envelhecimento/genéticaRESUMO
BACKGROUND: The relationship between accelerated epigenetic aging and musculoskeletal outcomes in women with HIV (WWH) has not been studied. METHODS: We measured DNA methylation age using the Infinium MethylationEPIC BeadChip in a cohort from the Women's Interagency HIV Study (n = 190) with measures of bone mineral density (BMD) and physical function. We estimated 6 biomarkers of epigenetic aging-epigenetic age acceleration (EAA), extrinsic EAA, intrinsic EAA, GrimAge, PhenoAge, and DNA methylation-estimated telomere length-and evaluated associations of epigenetic aging measures with BMD and physical function. We also performed epigenome-wide association studies to examine associations of DNA methylation signatures with BMD and physical function. RESULTS: This study included 118 WWH (mean age, 49.7 years; 69% Black) and 72 without HIV (mean age, 48.9 years; 69% Black). WWH had higher EAA (mean ± SD, 1.44 ± 5.36 vs -1.88 ± 5.07; P < .001) and lower DNA methylation-estimated telomere length (7.13 ± 0.31 vs 7.34 ± 0.23, P < .001) than women without HIV. There were no significant associations between accelerated epigenetic aging and BMD. Rather, measures of accelerated epigenetic aging were associated with lower physical function. CONCLUSIONS: Accelerated epigenetic aging was observed in WWH as compared with women without HIV and was associated with lower physical function in both groups.
Assuntos
Envelhecimento , Densidade Óssea , Metilação de DNA , Epigênese Genética , Infecções por HIV , Humanos , Feminino , Pessoa de Meia-Idade , Infecções por HIV/genética , Envelhecimento/genética , Densidade Óssea/genética , Adulto , Estudos de CoortesRESUMO
The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.
RESUMO
BACKGROUND: Cross-sectional studies have identified health risks associated with epigenetic aging. However, it is unclear whether these risks make epigenetic clocks 'tick faster' (i.e. accelerate biological aging). The current study examines concurrent and lagged within-person changes of a variety of health risks associated with epigenetic aging. METHODS: Individuals from the Great Smoky Mountains Study were followed from age 9 to 35 years. DNA methylation profiles were assessed from blood, at multiple timepoints (i.e. waves) for each individual. Health risks were psychiatric, lifestyle, and adversity factors. Concurrent (N = 539 individuals; 1029 assessments) and lagged (N = 380 individuals; 760 assessments) analyses were used to determine the link between health risks and epigenetic aging. RESULTS: Concurrent models showed that BMI (r = 0.15, PFDR < 0.01) was significantly correlated to epigenetic aging at the subject-level but not wave-level. Lagged models demonstrated that depressive symptoms (b = 1.67 months per symptom, PFDR = 0.02) in adolescence accelerated epigenetic aging in adulthood, also when models were fully adjusted for BMI, smoking, and cannabis and alcohol use. CONCLUSIONS: Within-persons, changes in health risks were unaccompanied by concurrent changes in epigenetic aging, suggesting that it is unlikely for risks to immediately 'accelerate' epigenetic aging. However, time lagged analyses indicated that depressive symptoms in childhood/adolescence predicted epigenetic aging in adulthood. Together, findings suggest that age-related biological embedding of depressive symptoms is not instant but provides prognostic opportunities. Repeated measurements and longer follow-up times are needed to examine stable and dynamic contributions of childhood experiences to epigenetic aging across the lifespan.
RESUMO
Posttraumatic stress disorder (PTSD) is associated with mortality and increased risk of diseases of aging, but underlying mechanisms remain unclear. We examine associations of PTSD with one potential pathway, accelerated epigenetic aging. In a longitudinal cohort of trauma-exposed middle-aged women (n = 831, n observations = 1,516), we examined cross-sectional and longitudinal associations between PTSD, with and without comorbid depression, and epigenetic aging measured by six clocks at two time points approximately 13.5 years apart: Hannum, Horvath, PhenoAge, GrimAge, DunedinPoAM, and DunedinPACE. We further examined associations of 3 well-established predictors of aging and mortality also linked with PTSD, namely, body mass index (BMI), diet quality, and physical activity, with epigenetic aging. Cross-sectionally, across all six clocks, epigenetic aging in women with PTSD alone, depression alone, and co-occurring depression and PTSD did not differ from the reference group of women without PTSD or depression in analyses adjusted for age, self-reported race, cell proportions, and ancestry principal components. In longitudinal analyses, we similarly did not find any difference in change in epigenetic age over time by PTSD and depression status at baseline. Among the health factors, in cross-sectional analyses, higher BMI was significantly and consistently associated with greater epigenetic aging measured by the PhenoAge, GrimAge, DunedinPoAM, and DunedinPACE clocks, but not measured by the Hannum or Horvath clocks. Physical activity was not consistently associated with epigenetic aging measured by Hannum, Horvath, PhenoAge, or GrimAge. In analyses with the DunedinPoAm and DunedinPACE clocks, women who reported exercise equivalent to 1 or more hours/week walking had slower epigenetic aging than women with less exercise. Diet quality was not consistently associated with epigenetic aging measured by any of the clocks. Our data do not provide evidence that biological aging, as measured by any of the six epigenetic clocks, is a pathway linking PTSD with mortality and diseases of aging.
RESUMO
Past research suggests that resilience to health hazards increases with age, potentially because less resilient individuals die at earlier ages, leaving behind their more resilient peers. Using lifetime cigarette smoking as a model health hazard, we examined whether accelerated epigenetic aging (indicating differences in the speed of individuals' underlying aging process) helps explain age-related resilience in a nationally representative sample of 3,783 older U.S. adults from the Health and Retirement Study. Results of mediation moderation analyses indicated that participants aged 86 or older showed a weaker association between lifetime cigarette smoking and mortality relative to participants aged 76-85 and a weaker association between smoking and multimorbidity relative to all younger cohorts. This moderation effect was mediated by a reduced association between smoking pack-years and epigenetic aging. This research helps identify subpopulations of particularly resilient individuals and identifies epigenetic aging as a potential mechanism explaining this process. Interventions in younger adults could utilize epigenetic aging estimates to identify the most vulnerable individuals and intervene before adverse health outcomes, such as chronic disease morbidity or mortality, manifest.
Assuntos
Envelhecimento , Epigênese Genética , Resiliência Psicológica , Humanos , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Fumar/epidemiologia , Estados Unidos/epidemiologia , Multimorbidade , Pessoa de Meia-Idade , Fatores EtáriosRESUMO
Childhood adversity is linked to psychological, behavioral, and physical health problems, including obesity and cardiometabolic disease. Epigenetic alterations are one pathway through which the effects of early life stress and adversity might persist into adulthood. Epigenetic mechanisms have also been proposed to explain why cardiometabolic health can vary greatly between individuals with similar Body Mass Index (BMIs). We evaluated two independent cross-sectional cohorts of adults without known medical illness, one of which explicitly recruited individuals with early life stress (ELS) and control participants (n = 195), and the other a general community sample (n = 477). In these cohorts, we examine associations between childhood adversity, epigenetic aging, and metabolic health. Childhood adversity was associated with increased GrimAge Acceleration (GAA) in both cohorts, both utilizing a dichotomous yes/no classification (both p < 0.01) as well as a continuous measure using the Childhood Trauma Questionnaire (CTQ) (both p < 0.05). Further investigation demonstrated that CTQ subscales for physical and sexual abuse (both p < 0.05) were associated with increased GAA in both cohorts, whereas physical and emotional neglect were not. In both cohorts, higher CTQ was also associated with higher BMI and increased insulin resistance (both p < 0.05). Finally, we demonstrate a moderating effect of BMI on the relationship between GAA and insulin resistance where GAA correlated with insulin resistance specifically at higher BMIs. These results, which were largely replicated between two independent cohorts, suggest that interactions between epigenetics, obesity, and metabolic health may be important mechanisms through which childhood adversity contributes to long-term physical and metabolic health effects.
Assuntos
Experiências Adversas da Infância , Índice de Massa Corporal , Humanos , Feminino , Masculino , Experiências Adversas da Infância/estatística & dados numéricos , Experiências Adversas da Infância/psicologia , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Estresse Psicológico/psicologia , Estresse Psicológico/complicações , Resistência à Insulina , Adultos Sobreviventes de Eventos Adversos na Infância/psicologia , Adultos Sobreviventes de Eventos Adversos na Infância/estatística & dados numéricos , Epigênese Genética , Obesidade/psicologia , Obesidade/genética , Envelhecimento/psicologia , Envelhecimento/genética , Estudos de CoortesRESUMO
Linear regression (LR) is vastly used in data analysis for continuous outcomes in biomedicine and epidemiology. Despite its popularity, LR is incompatible with missing data, which frequently occur in health sciences. For parameter estimation, this shortcoming is usually resolved by complete-case analysis or imputation. Both work-arounds, however, are inadequate for prediction, since they either fail to predict on incomplete records or ignore missingness-induced reduction in prediction accuracy and rely on (unrealistic) assumptions about the missing mechanism. Here, we derive adaptive predictor-set linear model (aps-lm), capable of making predictions for incomplete data without the need for imputation. It is derived by using a predictor-selection operation, the Moore-Penrose pseudoinverse, and the reduced QR decomposition. aps-lm is an LR generalization that inherently handles missing values. It is applied on a reference data set, where complete predictors and outcome are available, and yields a set of privacy-preserving parameters. In a second stage, these are shared for making predictions of the outcome on external data sets with missing entries for predictors without imputation. Moreover, aps-lm computes prediction errors that account for the pattern of missing values even under extreme missingness. We benchmark aps-lm in a simulation study. aps-lm showed greater prediction accuracy and reduced bias compared to popular imputation strategies under a wide range of scenarios including variation of sample size, goodness of fit, missing value type, and covariance structure. Finally, as a proof-of-principle, we apply aps-lm in the context of epigenetic aging clocks, linear models that predict a person's biological age from epigenetic data with promising clinical applications.
Assuntos
Biometria , Modelos Lineares , Biometria/métodos , HumanosRESUMO
Many lifestyle-related diseases such as cancer, dementia, myocardial infarction, and stroke are known to be caused by aging, and the WHO's ICD-11 (International Classification of Diseases, 11th edition) created the code "aging-related" in 2022. In other words, aging is irreversible but aging-related diseases are reversible, so taking measures to treat them is important for health longevity and preventing other diseases. Therefore, in this study, we used BioBran containing rice kefiran as an approach to improve aging. Rice kefiran has been reported to improve the intestinal microflora, regulate the intestines, and have anti-aging effects. BioBran has also been reported to have antioxidant effects and improve liver function, and human studies have shown that it affects the diversity of the intestinal microbiota. Quantitative measures of aging that correlate with disease risk are now available through the epigenetic clock test, which examines the entire gene sequence and determines biological age based on the methylation level. Horvath's Clock is the best known of many epigenetic clock tests and was published by Steve Horvath in 2013. In this study, we examine the effect of using Horvath's Clock to improve aging and report on the results, which show a certain effect.
Assuntos
Envelhecimento , Biomarcadores , Epigênese Genética , Oryza , Oryza/genética , Envelhecimento/genética , Projetos Piloto , Humanos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Metilação de DNA/efeitos dos fármacos , Probióticos , Pessoa de Meia-Idade , AnimaisRESUMO
Youth who grow up in disadvantaged neighborhoods experience poorer health later in life, but little is known about the biological mechanisms underlying these effects and socioenvironmental factors that may protect youth from the biological embedding of neighborhood adversity. This study tests whether supportive and consistent parenting buffers associations between neighborhood disadvantage in early adolescence and epigenetic aging in adulthood. A community sample from Birmingham, Alabama, USA (N = 343; 57% female; 81% Black, 19% White) was assessed in early adolescence (T1; ages 11 and 13) and adulthood (T2; age 27). At T1, neighborhood poverty was derived from census data and neighborhood disorder was reported by caregivers. Both youth and parents reported on parental discipline and nurturance. At T2, methylation of salivary DNA was used to derive a mortality risk index and Hannum, Horvath, PhenoAge, and GrimAge epigenetic age estimators. Regression analyses revealed that neighborhood disadvantage was associated with accelerated epigenetic aging and/or mortality risk only when combined with high levels of harsh and inconsistent discipline and low child-reported parental nurturance. These findings identify epigenetic aging and mortality risk as relevant mechanisms through which neighborhood adversity experienced in adolescence may affect later health; they also point to the importance of supportive and consistent parenting for reducing the biological embedding of neighborhood adversity in early adolescence.
Assuntos
Envelhecimento , Poder Familiar , Humanos , Adolescente , Feminino , Adulto , Masculino , Características de Residência , Características da Vizinhança , Epigênese GenéticaRESUMO
Earlier pubertal timing is associated with accelerated epigenetic aging, but the underlying mechanisms are not well understood. This three-wave longitudinal study examined negative health behaviors, specifically substance use, short sleep duration, and poor diet quality in middle adolescence, as mediators of links between earlier phenotypic and perceived pubertal timing measured in early adolescence and epigenetic aging on three epigenetic clocks in late adolescence (GrimAge, DunedinPACE, and PhenoAge). Phenotypic pubertal timing measured physical pubertal maturation relative to chronological age, whereas perceived pubertal timing was based on adolescents' subjective interpretation of their pubertal timing relative to their peers. Participants included 1213 youth (51% female, 49% male; 62% Black, 34% White) who participated during early adolescence (mean age = 13.10 years), middle adolescence (mean age = 16.1 years) and late adolescence (mean age = 19.7 years). Results from a mediation model revealed a mediation effect of earlier phenotypic pubertal timing on accelerated GrimAge in late adolescence through higher substance use during middle adolescence. There was also a direct effect of earlier phenotypic pubertal timing on accelerated DunedinPACE in males. Sleep duration and diet quality did not emerge as mediators but shorter sleep duration predicted accelerated GrimAge in females. These findings suggest that higher substance use presents a mechanism through which earlier maturing youth experience faster epigenetic aging that puts them at risk for poorer health across the lifespan.
RESUMO
Chronic low back pain (cLBP) is associated with insomnia and advanced age. Emerging evidence suggests that the severity of both sleep disorders (like insomnia) and chronic pain are associated with a faster pace of biological aging. We aimed to determine whether the pace of biological age mediates the relationship between insomnia and the impact of cLBP in a sample of community-dwelling adults ages 19 to 85 years. Participants (49 with no pain, 32 with low-impact pain, and 37 with high-impact pain) completed sociodemographic, pain, insomnia, and short physical performance battery assessments. We calculated the pace of biological aging using DunedinPACE from blood leukocyte DNA. On average, individuals with high-impact cLBP had significantly faster biological aging than those with low-impact and no chronic pain (p < .001). Bivariate associations of DunedinPACE scores with insomnia severity and functional performance were significant at p < .01 (rs = 0.324 and -0.502, respectively). After adjusting for race and sex, the association of insomnia severity and the impact of cLBP was partially mediated by the pace of biological aging (ß = 0.070, p < .001). Also, the association of insomnia severity with functional performance was partially mediated by the pace of biological aging (ß = -0.105, p < .001). Thus, insomnia remains strongly predictive of cLBP outcomes, and the pace of biological aging helps explain this association. Future prospective studies with repeated assessments are needed to uncover the directionality of these complex relationships and ultimately develop interventions to manage cLBP.
Assuntos
Dor Crônica , Dor Lombar , Distúrbios do Início e da Manutenção do Sono , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Distúrbios do Início e da Manutenção do Sono/complicações , Estudos Prospectivos , Envelhecimento , Dor Crônica/complicaçõesRESUMO
The genetic mechanisms contributing to lifespan variation remain unresolved. Based on recent conceptual advances in our understanding of epigenetic potential and the relocalization of chromatin modifiers (RCM), we hypothesize that increased CpG density is protective against age-related erosion of the epigenetic landscape and may explain interspecific variation in lifespan.
Assuntos
Envelhecimento/genética , Ilhas de CpG , Metilação de DNA , Longevidade/genética , Animais , Epigênese Genética , HumanosRESUMO
BACKGROUND: Visit-to-visit body weight variability (BWV), pulse rate variability (PRV), and blood pressure variability (BPV) have been respectively linked to multiple health outcomes. The associations of the combination of long-term variability in physiological measures with mortality and epigenetic age acceleration (EAA) remain largely unknown. METHODS: We constructed a composite score of physiological variability (0-3) of large variability in BWV, PRV, and BPV (the top tertiles) in 2006/2008-2014/2016 in the Health and Retirement Study (HRS) and 2011-2015 in the China Health and Retirement Longitudinal Study (CHARLS). All-cause mortality was documented through 2018. EAA was calculated using thirteen DNA methylation-based epigenetic clocks among 1047 participants in a substudy of the HRS. We assessed the relation of the composite score to the risk of mortality among 6566 participants in the HRS and 6906 participants in the CHARLS by Cox proportional models and then investigated its association with EAA using linear regression models. RESULTS: A higher score of variability was associated with higher mortality risk in both cohorts (pooled hazard ratio [HR] per one-point increment, 1.27; 95% confidence interval [CI], 1.18, 1.39; P-heterogeneity = 0.344), after adjustment for multiple confounders and baseline physiological measures. Specifically, each SD increment in BWV, PRV, and BPV was related to 21% (95% CI: 15%, 28%), 6% (0%, 13%), and 12% (4%, 19%) higher hazard of mortality, respectively. The composite score was significantly related to EAA in second-generation clocks trained on health outcomes (e.g., standardized coefficient = 0.126 in the Levine clock, 95% CI: 0.055, 0.196) but not in most first-generation clocks trained on chronological age. CONCLUSIONS: Larger variability in physiological measures was associated with a higher risk of mortality and faster EAA.
Assuntos
Envelhecimento , Epigênese Genética , Humanos , Estudos Prospectivos , Estudos Longitudinais , Envelhecimento/genética , China/epidemiologiaRESUMO
BACKGROUND: Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS: Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS: We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS: Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.
Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Masculino , Gravidez , Recém-Nascido , Feminino , Humanos , Pré-Escolar , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Ácidos Ftálicos/toxicidade , Parto , Epigênese Genética , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidadeRESUMO
BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, environmentally persistent chemicals, and prenatal exposures have been associated with adverse child health outcomes. Prenatal PFAS exposure may lead to epigenetic age acceleration (EAA), defined as the discrepancy between an individual's chronologic and epigenetic or biological age. OBJECTIVES: We estimated associations of maternal serum PFAS concentrations with EAA in umbilical cord blood DNA methylation using linear regression, and a multivariable exposure-response function of the PFAS mixture using Bayesian kernel machine regression. METHODS: Five PFAS were quantified in maternal serum (median: 27 weeks of gestation) among 577 mother-infant dyads from a prospective cohort. Cord blood DNA methylation data were assessed with the Illumina HumanMethylation450 array. EAA was calculated as the residuals from regressing gestational age on epigenetic age, calculated using a cord-blood specific epigenetic clock. Linear regression tested for associations between each maternal PFAS concentration with EAA. Bayesian kernel machine regression with hierarchical selection estimated an exposure-response function for the PFAS mixture. RESULTS: In single pollutant models we observed an inverse relationship between perfluorodecanoate (PFDA) and EAA (-0.148 weeks per log-unit increase, 95% CI: -0.283, -0.013). Mixture analysis with hierarchical selection between perfluoroalkyl carboxylates and sulfonates indicated the carboxylates had the highest group posterior inclusion probability (PIP), or relative importance. Within this group, PFDA had the highest conditional PIP. Univariate predictor-response functions indicated PFDA and perfluorononanoate were inversely associated with EAA, while perfluorohexane sulfonate had a positive association with EAA. CONCLUSIONS: Maternal mid-pregnancy serum concentrations of PFDA were negatively associated with EAA in cord blood, suggesting a pathway by which prenatal PFAS exposures may affect infant development. No significant associations were observed with other PFAS. Mixture models suggested opposite directions of association between perfluoroalkyl sulfonates and carboxylates. Future studies are needed to determine the importance of neonatal EAA for later child health outcomes.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Lactente , Recém-Nascido , Gravidez , Criança , Feminino , Humanos , Sangue Fetal , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Estudos Prospectivos , Teorema de Bayes , Alcanossulfonatos , Mães , Ácidos Carboxílicos , Epigênese GenéticaRESUMO
Although offspring of women exposed to childhood trauma exhibit elevated rates of psychopathology, many children demonstrate resilience to these intergenerational impacts. Among the variety of factors that likely contribute to resilience, epigenetic processes have been suggested to play an important role. The current study used a prospective design to test the novel hypothesis that offspring epigenetic aging - a measure of methylation differences that are associated with infant health outcomes - moderates the relationship between maternal exposure to childhood adversity and offspring symptomatology. Maternal childhood adversity was self-reported during pregnancy via the ACEs survey and the CTQ, which assessed total childhood trauma as well as maltreatment subtypes (i.e., emotional, physical, and sexual abuse). Offspring blood samples were collected at or shortly after birth and assayed on a DNA methylation microarray, and offspring symptomatology was assessed with the CBCL/1.5-5 when offspring were 2-4 years old. Results indicated that maternal childhood trauma, particularly sexual abuse, was predictive of offspring symptoms (ps = 0.003-0.03). However, the associations between maternal sexual abuse and offspring symptomatology were significantly attenuated in offspring with accelerated epigenetic aging. These findings further our understanding of how epigenetic processes may contribute to and attenuate the intergenerational link between stress and psychopathology.
RESUMO
This study examined struggles to establish autonomy and relatedness with peers in adolescence and early adulthood as predictors of advanced epigenetic aging assessed at age 30. Participants (N = 154; 67 male and 87 female) were observed repeatedly, along with close friends and romantic partners, from ages 13 through 29. Observed difficulty establishing close friendships characterized by mutual autonomy and relatedness from ages 13 to 18, an interview-assessed attachment state of mind lacking autonomy and valuing of attachment at 24, and self-reported difficulties in social integration across adolescence and adulthood were all linked to greater epigenetic age at 30, after accounting for chronological age, gender, race, and income. Analyses assessing the unique and combined effects of these factors, along with lifetime history of cigarette smoking, indicated that each of these factors, except for adult social integration, contributed uniquely to explaining epigenetic age acceleration. Results are interpreted as evidence that the adolescent preoccupation with peer relationships may be highly functional given the relevance of such relationships to long-term physical outcomes.
Assuntos
Comportamento do Adolescente , Relações Interpessoais , Adulto , Humanos , Masculino , Adolescente , Feminino , Grupo Associado , Amigos , Epigênese GenéticaRESUMO
BACKGROUND: DNA methylation in blood may reflect adverse exposures accumulated over the lifetime and could therefore provide potential improvements in the prediction of cancer risk. A substantial body of research has shown associations between epigenetic aging and risk of disease, including cancer. Here we aimed to study epigenetic measures of aging and lifestyle-related factors in association with risk of breast cancer. METHODS: Using data from four prospective case-control studies nested in three cohorts of European ancestry participants, including a total of 1,655 breast cancer cases, we calculated three methylation-based measures of lifestyle factors (body mass index [BMI], tobacco smoking and alcohol consumption) and seven measures of epigenetic aging (Horvath-based, Hannum-based, PhenoAge and GrimAge). All measures were regression-adjusted for their respective risk factors and expressed per standard deviation (SD). Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional or unconditional logistic regression and pooled using fixed-effects meta-analysis. Subgroup analyses were conducted by age at blood draw, time from blood sample to diagnosis, oestrogen receptor-positivity status and tumour stage. RESULTS: None of the measures of epigenetic aging were associated with risk of breast cancer in the pooled analysis: Horvath 'age acceleration' (AA): OR per SD = 1.02, 95%CI: 0.95-1.10; AA-Hannum: OR = 1.03, 95%CI:0.95-1.12; PhenoAge: OR = 1.01, 95%CI: 0.94-1.09 and GrimAge: OR = 1.03, 95%CI: 0.94-1.12, in models adjusting for white blood cell proportions, body mass index, smoking and alcohol consumption. The BMI-adjusted predictor of BMI was associated with breast cancer risk, OR per SD = 1.09, 95%CI: 1.01-1.17. The results for the alcohol and smoking methylation-based predictors were consistent with a null association. Risk did not appear to substantially vary by age at blood draw, time to diagnosis or tumour characteristics. CONCLUSION: We found no evidence that methylation-based measures of aging, smoking or alcohol consumption were associated with risk of breast cancer. A methylation-based marker of BMI was associated with risk and may provide insights into the underlying associations between BMI and breast cancer.
Assuntos
Neoplasias da Mama , Envelhecimento/genética , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Estilo de Vida , Estudos Prospectivos , Fatores de RiscoRESUMO
Gerontological research reveals considerable interindividual variability in aging phenotypes, and emerging evidence suggests that high impact chronic pain may be associated with various accelerated biological aging processes. In particular, epigenetic aging is a robust predictor of health-span and disability compared to chronological age alone. The current study aimed to determine whether several epigenetic aging biomarkers were associated with high impact chronic pain in middle to older age adults (44-78 years old). Participants (n = 213) underwent a blood draw, demographic, psychosocial, pain and functional assessments. We estimated five epigenetic clocks and calculated the difference between epigenetic age and chronological age, which has been previously reported to predict overall mortality risk, as well as included additional derived variables of epigenetic age previously associated with pain. There were significant differences across Pain Impact groups in three out of the five epigenetic clocks examined (DNAmAge, DNAmPhenoAge and DNAmGrimAge), indicating that pain-related disability during the past 6 months was associated with markers of epigenetic aging. Only DNAmPhenoAge and DNAmGrimAge were associated with higher knee pain intensity during the past 48 h. Finally, pain catastrophizing, depressive symptomatology and more neuropathic pain symptoms were significantly associated with an older epigenome in only one of the five epigenetic clocks (i.e. DNAmGrimAge) after correcting for multiple comparisons (corrected p's < 0.05). Given the scant literature in relation to epigenetic aging and the complex experience of pain, additional research is needed to understand whether epigenetic aging may help identify people with chronic pain at greater risk of functional decline and poorer health outcomes.