Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 35(6): 79, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134410

RESUMO

The methylotrophic yeast Pichia pastoris is widely used in recombinant expression of eukaryotic proteins owing to the ability of post-translational modification, tightly regulated promoters, and high cell density fermentation. However, episomal plasmids for heterologous gene expression and the CRISPR/Cas9 system for genome editing have not been well developed in P. pastoris. In the present study, a panel of episomal plasmids containing various autonomously replicating sequences (ARSs) were constructed and their performance in transformation efficiency, copy numbers, and propagation stability were systematically compared. Among the five ARSs with different origins, panARS isolated from Kluyveromyces lactis was determined to have the best performance and used to develop an efficient CRISPR/Cas9 based genome editing system. Compared with a previously reported system using the endogenous and most commonly used ARS (PARS1), the CRISPR/Cas9 genome editing efficiency was increased for more than tenfold. Owing to the higher plasmid stability with panARS, efficient CRISPR/Cas9-mediated genome editing with a type III promoter (i.e. SER promoter) to drive the expression of the single guide RNA (sgRNA) was achieved for the first time. The constructed episomal plasmids and developed CRISPR/Cas9 system will be important synthetic biology tools for both fundamental studies and industrial applications of P. pastoris.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Engenharia Genética/métodos , Pichia/genética , Plasmídeos/genética , Transformação Genética , Replicação do DNA , Escherichia coli/genética , Dosagem de Genes , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Vetores Genéticos , Instabilidade Genômica , Microbiologia Industrial , Kluyveromyces/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos , Biologia Sintética
2.
Microb Cell Fact ; 15(1): 139, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515025

RESUMO

BACKGROUND: Recombinant protein production in the methylotrophic yeast Pichia pastoris largely relies on integrative vectors. Although the stability of integrated expression cassettes is well appreciated for most applications, the availability of reliable episomal vectors for this host would represent a useful tool to expedite cloning and high-throughput screening, ameliorating also the relatively high clonal variability reported in transformants from integrative vectors caused by off-target integration in the P. pastoris genome. Recently, heterologous and endogenous autonomously replicating sequences (ARS) were identified in P. pastoris by genome mining, opening the possibility of expanding the available toolbox to include efficient episomal plasmids. The aim of this technical report is to validate a 452-bp sequence ("panARS") in context of P. pastoris expression vectors, and to compare their performance to classical integrative plasmids. Moreover, we aimed to test if such episomal vectors would be suitable to sustain in vivo recombination, using fragments for transformation, directly in P. pastoris cells. RESULTS: A panARS-based episomal vector was evaluated using blue fluorescent protein (BFP) as a reporter gene. Normalized fluorescence from colonies carrying panARS-BFP outperformed the level of signal obtained from integrative controls by several-fold, whereas endogenous sequences, identified from the P. pastoris genome, were not as efficient in terms of protein production. At the single cell level, panARS-BFP clones showed lower interclonal variability but higher intraclonal variation compared to their integrative counterparts, supporting the idea that heterologous protein production could benefit from episomal plasmids. Finally, efficiency of 2-fragment and 3-fragment in vivo recombination was tested using varying lengths of overlapping regions and molar ratios between fragments. Upon optimization, minimal background was obtained for in vivo assembled vectors, suggesting this could be a quick and efficient method to generate of episomal plasmids of interest. CONCLUSIONS: An expression vector based on the panARS sequence was shown to outperform its integrative counterparts in terms of protein productivity and interclonal variability, facilitating recombinant protein expression and screening. Using optimized fragment lengths and ratios, it was possible to perform reliable in vivo recombination of fragments in P. pastoris. Taken together, these results support the applicability of panARS episomal vectors for synthetic biology approaches.


Assuntos
Vetores Genéticos , Pichia/genética , Plasmídeos , Proteínas Recombinantes/biossíntese , Recombinação Genética , Clonagem Molecular , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Pichia/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Biologia Sintética/métodos
3.
ACS Synth Biol ; 13(2): 648-657, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38224571

RESUMO

The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Bacteroides/genética , Bacteroides/metabolismo , Sinais Direcionadores de Proteínas/genética , Plasmídeos/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Transporte Proteico
4.
Bioresour Technol ; 408: 131188, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089656

RESUMO

Currently, fructooligosaccharides (FOS) are converted from sucrose by purified enzymes or fungal cells, but these methods are costly and time-consuming. Here, the optimal fermentation conditions for strain E326 were determined through fermentation optimization: initial glucose 200 g/L, NaCl 25 g/L, inoculum volume 20 %, dissolved oxygen 20-30 %, pH 3, and glucose feeding concentration 100 g/L, which increased erythritol titer by 1.5 times. The co-expression of HGT1 and APC11 genes alleviated the erythritol synthesis stagnation, shorten the fermentation time by 16.7 %, and increased the erythritol productivity by 17.2 %. The episomal plasmids based on yeast mitochondrial replication origins (mtORIs) were constructed to surface display fructosyltransferase, effectively utilizing waste yeast cells generated during erythritol fermentation. Under the conditions of 60℃ and pH 6, the FOS yield reached 65 %, which to our best of knowledge is so-far the highest yield of FOS obtained. These findings will contribute to the industrial production of erythritol and FOS.

5.
ACS Synth Biol ; 13(1): 310-318, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38150419

RESUMO

As a desirable microbial cell factory, Pichia pastoris has garnered extensive utilization in metabolic engineering. Nevertheless, the lack of fine-tuned gene expression components has significantly constrained the potential scope of applications. Here, a gradient strength promoter library was constructed by random hybridization and high-throughput screening. The hybrid promoter, phy47, performed best with 2.93-fold higher GFP expression levels than GAP. The broad applicability of the novel hybrid promoter variants in biotechnological production was further validated in the biosynthesis of pinene and rHuPH20 with higher titers. The upstream regulatory sequences (UASE and URSD) were identified and applied to promoters GAP and ENO1, resulting in a 34 and 43% increase and an 18 and 37% decrease in the expression level, respectively. Yeast one-hybrid analysis showed that transcription factor HAP2 activates the hybrid promoter through a direct interaction with the crucial regulatory region UASH. Furthermore, a short segment of tunable activation sequence (20 bp) was also screened, and artificial promoters were constructed in tandem with the addition of regulatory sequence, resulting in a 61% expansion of the expression range. This study provides a molecular tool and regulatory elements for further synthetic biology research in P. pastoris.


Assuntos
Pichia , Sequências Reguladoras de Ácido Nucleico , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Expressão Gênica , Regulação Fúngica da Expressão Gênica
6.
Bioimpacts ; 14(1): 27652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327632

RESUMO

Introduction: Patient-derived induced pluripotent stem cells (iPSCs) have been widely used as disease models to test new therapeutic strategies. Moreover, the regenerative potential of stem cells can be improved with the use of biologically active compounds. Our study was designed to explore the effect of honokiol, a small polyphenol molecule extracted from Magnolia officinalis, on the survival and culture time of iPSC-derived neurons from a sporadic Alzheimer's disease (AD) patient. This study aimed to generate iPSCs from peripheral blood mononuclear cells (PBMCs) of an AD patient using episomal plasmids with a nucleofector system and differentiate them into neurons. These iPSC-derived neurons were used to investigate the effect of honokiol extracted from M. officinalis on their survival and long-term cultures. Methods: IPSCs were generated from PBMCs of an AD patient by introducing Oct-3/4, Sox2, Klf4, L-Myc, and Lin28 using NucleofectorTM Technology. Differentiation of neurons derived from iPSCs was carried out using inducers and recognized by biomarkers. The viability of iPSC-derived neurons with the addition of honokiol extracted from the bark of M. officinalis was determined by the MTT analytical kit. Results: IPSCs were generated by reprogramming AD patient-derived PBMCs and subsequently converted into neurons. The survival and growth of iPSC-derived neurons were significantly enhanced by adding honokiol in the experiment conditions. Conclusion: AD iPSC-derived neurons had a high viability rate when cultured in the presence of honokiol. These results have shown that AD iPSC-derived neurons can be an excellent model for screening neurotrophic agents and improving the conditions for long-term cultures of human iPSC-derived neurons. Honokiol proves to be a potential candidate for cellular therapeutics against neurodegenerative disorders.

7.
Curr Protoc ; 4(5): e1012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712688

RESUMO

Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming porcine somatic cells still suffer from low efficiency and transgene retention. The Basic Protocol describes reprogramming procedures to establish transgene-free porcine iPSCs (PiPSCs) from porcine fibroblasts. This method uses episomal plasmids encoding POU5F1, SOX2, NANOG, KLF4, SV40LT, c-MYC, LIN28A, and microRNA-302/367, combined with an optimized medium, to establish PiPSC lines. Support protocols describe the establishment and characterization of clonal PiPSC lines, as well as the preparation of feeder cells and EBNA1 mRNA. This optimized, step-by-step approach tailored to this species enables the efficient derivation of PiPSCs in ∼4 weeks. The establishment of transgene-free PiPSCs provides a new and valuable model for studies of larger mammalian species' development, disease, and regenerative biology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Reprogramming of porcine fibroblasts with episomal plasmids Support Protocol 1: Preparation of mouse embryonic fibroblasts for feeder layer Support Protocol 2: Preparation of in vitro-transcribed EBNA1 mRNA Support Protocol 3: Establishment of clonal porcine induced pluripotent stem cell (PiPSC) lines Support Protocol 4: PiPSC characterization: Genomic DNA PCR and RT-PCR Support Protocol 5: PiPSC characterization: Immunostaining.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel , Transgenes , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Suínos , Camundongos , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Cultura de Células/métodos , Reprogramação Celular/genética
8.
J Biosci Bioeng ; 135(1): 10-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36253249

RESUMO

Due to the lack of available episomal plasmid, the improvement of many industrial strains, especially exogenous gene expression, is severely restricted. The failure of autonomous replication or low copy number of episomal plasmids is the main reason for the failure of many episomal plasmids construction. In this paper, Candida glycerinogenes, an industrial strain lacking episomal plasmids, was employed as the topic. A series of GFP-based plasmids containing autonomously replicating sequence (ARS) from different strain sources were constructed and analyzed for performance, and it was found that only the panARS from Kluyveromyces lactis compared with other nine low capacity ARSs proved to have the best performance and could be used to construct episomal plasmid. Further, the dual-ARS strategy was used to optimize the episomal plasmid, and the results indicated that only the dual-ARS plasmid +PPARS2 with double different ARSs, not the dual-ARS plasmid +panARS with double same ARSs, showed an improvement in all properties, with an increase in transformation efficiency of about 36% and a synchronous trend of fluorescence intensity and copy number, both by about 40%. In addition, constructed episomal plasmids were used to express the exogenous gene CrGES, and the fact that geraniol was found proved the versatility of the plasmids. The successful construction of episomal plasmids will also substantially facilitate genetic engineering research and industrial use of C. glycerinogenes in the future, as well as providing a feasible approach to create episomal plasmids for industrial strains.


Assuntos
Pichia , Leveduras , Plasmídeos/genética , Leveduras/genética , Pichia/genética , Engenharia Genética , Transformação Genética
9.
ACS Synth Biol ; 10(4): 826-835, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33739103

RESUMO

Episomal plasmids are crucial expression tools for recombinant protein production and genome editing. In Saccharomyces cerevisiae, 2-µm artificial plasmids with a high copy number have been developed and used in metabolic engineering and synthetic biology. However, in unconventional yeasts such as Yarrowia lipolytica, episomal expression relies on a chromosome replication system; this system has the disadvantages of genetic instability and low copy numbers. In this study, we identified and characterized replication origins from the mitochondrial DNA (mtDNA) of Y. lipolytica. A 516-bp mtDNA sequence, mtORI, was confirmed to mediate the autonomous replication of circular plasmids with high protein expression levels and hereditary stability. However, the nonhomologous end-joining pathway could interfere with mtORI plasmid replication and engender genetic heterogeneity. In the Po 1f ΔKu70 strain, the homogeneity of the mtORI plasmid was significantly improved, and the highest copy number reached 5.0 per cell. Overall, mitochondrial-origin sequences can be used to establish highly stable and autonomously replicating plasmids, which can be a powerful supplement to the current synthetic biology tool library and promote the development of Y. lipolytica as a microbial cell factory.


Assuntos
Mitocôndrias/metabolismo , Yarrowia/metabolismo , Mitocôndrias/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Origem de Replicação/genética , Yarrowia/genética
10.
Biology (Basel) ; 10(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418890

RESUMO

Kaempferol and quercetin are the essential plant secondary metabolites that confer huge biological functions in the plant defense system. In this study, biosynthetic pathways for kaempferol and quercetin were constructed in Saccharomyces cerevisiae using naringenin as a substrate. OsF3H was cloned into pRS42K yeast episomal plasmid (YEp) vector and the activity of the target gene was analyzed in engineered and empty strains. We confirmed a novel step of kaempferol and quercetin biosynthesis directly from naringenin, catalyzed by the rice flavanone 3-hydroxylase (F3H). The results were confirmed through thin layer chromatography (TLC) followed by western blotting, nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry LCMS-MS. TLC showed positive results when comparing both compounds extracted from the engineered strain with the standard reference. Western blotting confirmed the lack of OsF3H activity in empty strains and confirmed high OsF3H expression in engineered strains. NMR spectroscopy confirmed only quercetin, while LCMS-MS results revealed that F3H is responsible for the conversion of naringenin to both kaempferol and quercetin.

11.
Methods Enzymol ; 660: 3-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34742395

RESUMO

Baker's yeast, Saccharomyces cerevisiae, is a versatile system for expression of recombinant eukaryotic proteins. This system is simple to use and does not require extraordinary expertise nor tissue culture facilities. Proteins expressed in the yeast system provide eukaryotic post-translational modifications, making it superior to bacterial expression for factors that require post-translational modification. In addition, it is quite simple to co-express multiple genes at the same time, for recombinant production of large multi-protein complexes. In this chapter, we provide protocols for inducible expression of recombinant genes from episomal plasmid vectors, and protocols for integration of the recombinant genes into the chromosomes of yeast, which enables simple rapid growth of expression cells and induction of recombinant protein complexes in non-selectable rich media.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vetores Genéticos/genética , Plasmídeos/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Methods Mol Biol ; 1330: 37-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621587

RESUMO

Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Plasmídeos/genética , Técnicas de Cultura de Células , Expressão Gênica , Humanos , Reação em Cadeia da Polimerase , Transfecção/métodos , Transgenes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa