Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Infect Dis ; 228(Suppl 7): S721-S729, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37474155

RESUMO

Vesicular stomatitis virus-Ebola virus (VSV-EBOV) vaccine has been successfully used in ring vaccination approaches during EBOV disease outbreaks demonstrating its general benefit in short-term prophylactic vaccination, but actual proof of its benefit in true postexposure prophylaxis (PEP) for humans is missing. Animal studies have indicated PEP efficacy when VSV-EBOV was used within hours of lethal EBOV challenge. Here, we used a lower EBOV challenge dose and a combined intravenous and intramuscular VSV-EBOV administration to improve PEP efficacy in the rhesus macaque model. VSV-EBOV treatment 1 hour after EBOV challenge resulted in delayed disease progression but little benefit in outcome. Thus, we could not confirm previous results indicating questionable benefit of VSV-EBOV for EBOV PEP in a nonhuman primate model.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Macaca mulatta , Vesiculovirus , Vírus da Estomatite Vesicular Indiana
2.
J Infect Dis ; 228(Suppl 7): S712-S720, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290053

RESUMO

BACKGROUND: The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS: To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS: Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS: This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Vacinas Virais , Animais , Estomatite Vesicular/prevenção & controle , Anticorpos Antivirais , Vesiculovirus/genética , Glicoproteínas/genética , Macaca fascicularis , Imunoglobulina G
3.
J Infect ; 89(4): 106237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39121969

RESUMO

BACKGROUND: Unlike adults, children experienced stronger and longer vector replication in plasma and shedding in saliva following rVSVΔG-ZEBOV-GP vaccination. The resulting risks of immunosuppression or immune hyperactivation leading to increased Adverse Events (AEs) and altered antibody responses are concerns that have been addressed in the present manuscript. METHODS: Children aged 1-12 years living in Gabon received either rVSVΔG-ZEBOV-GP (ERVEBO®) vaccine or the varicella-zoster virus (VZV) vaccine (VZV). The concentration of rVSVΔG vector in blood and saliva, the occurrence of AEs up to day 28; the anti-rVSVΔG-ZEBOV-GP and anti-VZV IgG antibody titres, neutralising and avidity functions of anti-rVSVΔG-ZEBOV-GP by day 365; were assessed in serum. (PACTR202005733552021) FINDINGS: In the rVSVΔG-ZEBOV-GP group, 70% and 7% of children had >0 copies/ml of rVSVΔG respectively in plasma by day 3 and in saliva by day 14 after vaccination, with no detection on day 28. Significantly higher but transient AEs occurred in the rVSVΔG-ZEBOV-GP group. Both vaccines induced seroconversion on day 28 and sustainable IgG antibody titres by day 365. Avidity and neutralisation functions of the anti-rVSVΔG-ZEBOV-GP antibodies peaked at day 28 and were maintained by day 365. INTERPRETATION: The replication and shedding do not affect the favourable risk-benefit balance of the rVSVΔG-ZEBOV-GP in children.


Assuntos
Anticorpos Antivirais , Vacinas contra Ebola , Humanos , Gabão , Pré-Escolar , Anticorpos Antivirais/sangue , Masculino , Feminino , Criança , Lactente , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/administração & dosagem , Saliva/imunologia , Saliva/virologia , Ebolavirus/imunologia , Ebolavirus/genética , Imunoglobulina G/sangue , Doença pelo Vírus Ebola/prevenção & controle , Replicação Viral , Imunogenicidade da Vacina , Anticorpos Neutralizantes/sangue , Vacinação , Eliminação de Partículas Virais
4.
Vaccines (Basel) ; 10(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36146524

RESUMO

This review describes key aspects of the development of the rVSVΔG-ZEBOV-GP Ebola vaccine and key activities which are continuing to further expand our knowledge of the product. Extensive partnerships and innovative approaches were used to address the various challenges encountered during this process. The rVSVΔG-ZEBOV-GP Ebola vaccine was initially approved by the European Medicines Agency and prequalified by the World Health Organization in November 2019. It was approved by the United States Food and Drug Administration in December 2019 and approved in five African countries within 90 days of prequalification. The development resulted in the first stockpile of a registered Ebola vaccine that is available to support outbreak response. This also provides insights into how the example of rVSVΔG-ZEBOV-GP can inform the development of vaccines for Sudan ebolavirus, Marburg virus, and other emerging epidemic diseases in terms of the types of approaches and data needed to support product registration, availability, and the use of a filovirus vaccine.

5.
Methods Mol Biol ; 2410: 193-208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914048

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health emergency. Several vaccine candidates have been developed in response to the COVID-19 pandemic. One approach is to construct live-recombinant viruses expressing the SARS-CoV-2 spike protein (S) as vaccine candidates. The vesicular stomatitis virus (VSV) vector is a mature vaccine platform which was successfully developed as a vaccine against Ebola virus (EBOV), leading to its licensure by the Food and Drug Administration (FDA) in December 2019. Based on this work, we developed two live, replication-competent VSV-vectored vaccines against SARS-CoV-2: (1) a VSV expressing the S protein of SARS-CoV-2 and (2) a bivalent VSV expressing the S protein of SARS-CoV-2 and the glycoprotein (GP) of EBOV. This protocol describes the methodologies for the design, cloning, rescue, and preparation of these recombinant VSV vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas Sintéticas , COVID-19/prevenção & controle , Ebolavirus/imunologia , Humanos , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Desenvolvimento de Vacinas , Vacinas Atenuadas
6.
J Travel Med ; 28(8)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34128975

RESUMO

BACKGROUND AND RATIONALE: Geneva University Hospitals were granted a temporary authorization to administer the recombinant live vesicular stomatitis virus rVSV-ZEBOV (Ervebo®) vaccine to expatriate humanitarian frontline workers (FLWs) prior to mission deployment. OBJECTIVES: Our aims were to assess the feasibility of FLW vaccination before deployment and to report adverse events (AEs). METHODS: FLWs received a single injection of rVSV-ZEBOV (>7.2E7 plaque forming unit) during their pre-deployment medical check-up at the Travel Medicine Clinic of the Geneva University Hospitals (Day 0). A safety questionnaire regarding potential AEs was emailed to FLWs on Days 3 and 21. Early and delayed AEs were those starting within 3 or 21 days of vaccination, respectively. RESULTS: Between 1 August 2019 and 30 June 2020, 124 FLWs received the rVSV-ZEBOV vaccine. Eighty-six volunteers (86/124; 69%) received a concomitant vaccine. The response rate to the follow-up questionnaire was 88 and 55% at Days 3 and 21, respectively. Most respondents (105/109; 96.3%), experienced at least one AE, with a mean of three (±SD 1.75) AEs per person. The most common AE was injection site pain, followed by fever (53/109; 48.6%), fatigue (51/109; 46.7%) and myalgia (49/109; 44.9%). Most early AEs (360/377; 95.4%) resolved within 3 days, reflecting vaccine reactogenicity. Delayed AEs were reported by 6/69 (7.2%) subjects, the median time to symptom onset was 11 days (range: 5-14); half of them were joint-related AEs (3/6). Four serious adverse events (SAE) were observed: two cases of high grade fever, one rash and one case of arthritis. Two suspected unexpected serious adverse reactions were observed: one case of continuing recurrent transient dizziness and fatigue considered related to the vaccine; and one case of presbyopia that was deemed unrelated. CONCLUSION: AEs to rVSV-ZEBOV were common but in general transient and were well tolerated, pre-deployment rVSV-ZEBOV vaccination in FLW is feasible and can be included with pre-mission check-up.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Antivirais , Fadiga/induzido quimicamente , Fadiga/tratamento farmacológico , Estudos de Viabilidade , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Vacinação/efeitos adversos , Vesiculovirus
7.
Vaccine ; 38(45): 7166-7174, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32951937

RESUMO

Ebolavirus (EBOV) entry to host cells requires membrane-associated glycoprotein (GP). A recombinant vesicular stomatitis virus vector carrying Zaire Ebola virus glycoprotein (rVSV-ZEBOV) was developed as a vaccine against ebolaviruses. The VSV glycoprotein gene was deleted (rVSVΔG) and ZEBOV glycoprotein (GP) was inserted into the deleted VSV glycoprotein open reading frame (ORF) resulting in a live, replication-competent vector (rVSVΔG-ZEBOV-GP). Automated capillary westerns were used to characterize the rVSVΔG-ZEBOV-GP vaccine (ERVEBO®) manufacturing process with regards to glycoprotein (GP) structure and variants. The method shows a unique electropherogram profile for each process step which could be used to monitor process robustness. rVSVΔG-ZEBOV-GP encodes GP (GP1-GP2), secreted GP (sGP), and small secreted GP (ssGP) variants. Furthermore, a TACE-like activity was observed indirectly by detecting soluble GP2Δ after virus precipitation by ultracentrifugation. Capillary western blotting techniques can guide process development by evaluating process steps such as enzyme treatment. In addition, the technique can assess GP stability and process lot-to-lot consistency. Finally, capillary western-based technology was used to identify a unique biochemical profile of the rVSVΔG-ZEBOV-GP vaccine strain in final product. Virion membrane-bound GP1-GP2 is critical to vaccine-elicited protection by providing both neutralizing antibodies and T-cell response.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Antivirais , Western Blotting , Ebolavirus/genética , Glicoproteínas/genética , Humanos , Proteínas do Envelope Viral/genética
8.
Vaccines (Basel) ; 8(1)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210083

RESUMO

Ebola virus epidemics can be effectively limited by the VSV-EBOV vaccine (Ervebo) due to its rapid protection abilities; however, side effects prevent the broad use of VSV-EBOV as vaccine. Mechanisms explaining the efficient immune activation after single injection with the VSV-EBOV vaccine remain mainly unknown. Here, using the clinically available VSV-EBOV vaccine (Ervebo), we show that the cell-intrinsic expression of the interferon-inhibitor Usp18 in CD169+ macrophages is one important factor modulating the anti-Ebola virus immune response. The absence of Usp18 in CD169+ macrophages led to the reduced local replication of VSV-EBOV followed by a diminished innate as well as adaptive immune response. In line, CD169-Cre+/ki x Usp18fl/fl mice showed reduced innate and adaptive immune responses against the VSV wildtype strain and died quickly after infection, suggesting that a lack of Usp18 makes mice more susceptible to the side effects of the VSV vector. In conclusion, our study shows that Usp18 expression in CD169+ macrophages is one important surrogate marker for effective vaccination against VSV-EBOV, and probably other VSV-based vaccines also.

9.
Vaccines (Basel) ; 8(4)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352786

RESUMO

rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19.

10.
Future Microbiol ; 15: 85-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32030996

RESUMO

To evaluate the risk-benefits balance of the rVSV-ΔG-ZEBOV-GP vaccine. We performed a systematic review to summarize data on safety, immunogenicity and efficacy. About 17,600 adults and 234 children received 11 different doses of the V920 vaccine ranging from 3000 to 100 million and 20 million plaque-forming units, respectively, during Phase I-III clinical trials. Cases of severe but transient arthritis were reported in about six and 0.08% of vaccinees in high-income countries (HICs) and low-middle-income countries (LMICs), respectively. The 20 million plaque-forming units dose yielded GP-specific antibody titres which peaked at day 28 with a pooled geometric mean titres of 2557.7 (95% CI: 1665.5-3934.2) versus 1156.9 (95% CI: 832.5-1649.2) but with similar seroconversion rates at 96% (95% CI: 87-100) versus 100% (95% CI: 90-100) for HICs and LMICs, respectively. Data from stringent Phase I-II clinical trials in LMICs and HICs and from the ring efficacy trials yielded a good risk-benefit balance of the V920 vaccine in adults, but also in children and pregnant and lactating women and HIV-infected people.


Assuntos
Ensaios Clínicos como Assunto , Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/uso terapêutico , Imunogenicidade da Vacina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Gravidez , Medição de Risco , Resultado do Tratamento , Vacinação/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa