Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.729
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
CA Cancer J Clin ; 73(3): 286-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495087

RESUMO

Cancer is one of the foremost health problems worldwide and is among the leading causes of death in the United States. Gastrointestinal tract cancers account for almost one third of the cancer-related mortality globally, making it one of the deadliest groups of cancers. Early diagnosis and prompt management are key to preventing cancer-related morbidity and mortality. With advancements in technology and endoscopic techniques, endoscopy has become the core in diagnosis and management of gastrointestinal tract cancers. In this extensive review, the authors discuss the role endoscopy plays in early detection, diagnosis, and management of esophageal, gastric, colorectal, pancreatic, ampullary, biliary tract, and small intestinal cancers.


Assuntos
Gastroenterologia , Neoplasias Gastrointestinais , Humanos , Estados Unidos/epidemiologia , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/terapia , Endoscopia/métodos , Pâncreas
2.
Am J Hum Genet ; 110(10): 1690-1703, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37673066

RESUMO

Esophageal squamous cell carcinoma (ESCC) has a high disease burden in sub-Saharan Africa and has a very poor prognosis. Genome-wide association studies (GWASs) of ESCC in predominantly East Asian populations indicate a substantial genetic contribution to its etiology, but no genome-wide studies have been done in populations of African ancestry. Here, we report a GWAS in 1,686 African individuals with ESCC and 3,217 population-matched control individuals to investigate its genetic etiology. We identified a genome-wide-significant risk locus on chromosome 9 upstream of FAM120A (rs12379660, p = 4.58 × 10-8, odds ratio = 1.28, 95% confidence interval = 1.22-1.34), as well as a potential African-specific risk locus on chromosome 2 (rs142741123, p = 5.49 × 10-8) within MYO1B. FAM120A is a component of oxidative stress-induced survival signals, and the associated variants at the FAM120A locus co-localized with highly significant cis-eQTLs in FAM120AOS in both esophageal mucosa and esophageal muscularis tissue. A trans-ethnic meta-analysis was then performed with the African ESCC study and a Chinese ESCC study in a combined total of 3,699 ESCC-affected individuals and 5,918 control individuals, which identified three genome-wide-significant loci on chromosome 9 at FAM120A (rs12379660, pmeta = 9.36 × 10-10), chromosome 10 at PLCE1 (rs7099485, pmeta = 1.48 × 10-8), and chromosome 22 at CHEK2 (rs1033667, pmeta = 1.47 × 10-9). This indicates the existence of both shared and distinct genetic risk loci for ESCC in African and Asian populations. Our GWAS of ESCC conducted in a population of African ancestry indicates a substantial genetic contribution to ESCC risk in Africa.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , População do Leste Asiático , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , População Africana
3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487847

RESUMO

Causal discovery is a powerful tool to disclose underlying structures by analyzing purely observational data. Genetic variants can provide useful complementary information for structure learning. Recently, Mendelian randomization (MR) studies have provided abundant marginal causal relationships of traits. Here, we propose a causal network pruning algorithm MRSL (MR-based structure learning algorithm) based on these marginal causal relationships. MRSL combines the graph theory with multivariable MR to learn the conditional causal structure using only genome-wide association analyses (GWAS) summary statistics. Specifically, MRSL utilizes topological sorting to improve the precision of structure learning. It proposes MR-separation instead of d-separation and three candidates of sufficient separating set for MR-separation. The results of simulations revealed that MRSL had up to 2-fold higher F1 score and 100 times faster computing time than other eight competitive methods. Furthermore, we applied MRSL to 26 biomarkers and 44 International Classification of Diseases 10 (ICD10)-defined diseases using GWAS summary data from UK Biobank. The results cover most of the expected causal links that have biological interpretations and several new links supported by clinical case reports or previous observational literatures.


Assuntos
Algoritmos , Estudo de Associação Genômica Ampla , Causalidade , Fenótipo , Transporte Proteico , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
4.
Mol Cell Proteomics ; 23(6): 100764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604503

RESUMO

Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Proteômica , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Processamento Pós-Transcricional do RNA , Proteoma/metabolismo , Multiômica
5.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155893

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Ratos , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Antagomirs , Zinco/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Inflamação/complicações , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ligação a RNA/metabolismo
6.
EMBO J ; 40(13): e106183, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010456

RESUMO

Exposure to heat stress triggers a well-defined acute response marked by HSF1-dependent transcriptional upregulation of heat shock proteins. Cells allowed to recover acquire thermotolerance, but this adaptation is poorly understood. By quantitative proteomics, we discovered selective upregulation of HSP70-family chaperone HSPA1 and its co-factors, HSPH1 and DNAJB1, in MCF7 breast cancer cells acquiring thermotolerance. HSPA1 was found to have dual function during heat stress response: (i) During acute stress, it promotes the recruitment of the 26S proteasome to translating ribosomes, thus poising cells for rapid protein degradation and resumption of protein synthesis upon recovery; (ii) during thermotolerance, HSPA1 together with HSPH1 maintains ubiquitylated nascent/newly synthesized proteins in a soluble state required for their efficient proteasomal clearance. Consistently, deletion of HSPH1 impedes thermotolerance and esophageal tumor growth in mice, thus providing a potential explanation for the poor prognosis of digestive tract cancers with high HSPH1 and nominating HSPH1 as a cancer drug target. We propose dual roles of HSPA1 either alone or in complex with HSPH1 and DNAJB1 in promoting quality control of nascent/newly synthesized proteins and cellular thermotolerance.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Resposta ao Choque Térmico/fisiologia , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Controle de Qualidade , Regulação para Cima/fisiologia
7.
Gastroenterology ; 167(3): 485-492.e3, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38513743

RESUMO

BACKGROUND & AIMS: Helicobacter pylori infection is associated with a decreased risk of esophageal adenocarcinoma, and the decreasing prevalence of such infection might contribute to the increasing incidence of this tumor. We examined the hypothesis that eradication treatment of H pylori increases the risk of esophageal adenocarcinoma. METHODS: This population-based multinational cohort, entitled "Nordic Helicobacter Pylori Eradication Project (NordHePEP)," included all adults (≥18 years) receiving H pylori eradication treatment from 1995-2018 in any of the 5 Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) with follow-up throughout 2019. Data came from national registers. We calculated standardized incidence ratios (SIRs) with 95% confidence intervals (CIs) by dividing the cancer incidence in the exposed cohort by that of the entire Nordic background populations of the corresponding age, sex, calendar period, and country. Analyses were stratified by factors associated with esophageal adenocarcinoma (ie, education, comorbidity, gastroesophageal reflux, and certain medications). RESULTS: Among 661,987 participants who contributed 5,495,552 person-years after eradication treatment (median follow-up, 7.8 years; range, 1-24 years), 550 cases of esophageal adenocarcinoma developed. The overall SIR of esophageal adenocarcinoma was not increased (SIR = 0.89; 95% CI, 0.82-0.97). The SIR did not increase over time after eradication treatment, but rather decreased and was 0.73 (95% CI, 0.61-0.86) at 11-24 years after treatment. There were no major differences in the stratified analyses. The overall SIR of esophageal squamous cell carcinoma, calculated for comparison, showed no association (SIR = 0.99; 95% CI, 0.89-1.11). CONCLUSIONS: This absence on an increased risk of esophageal adenocarcinoma after eradication treatment of H pylori suggests eradication is safe from a cancer perspective.


Assuntos
Adenocarcinoma , Antibacterianos , Neoplasias Esofágicas , Infecções por Helicobacter , Helicobacter pylori , Humanos , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/microbiologia , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/diagnóstico , Adenocarcinoma/epidemiologia , Adenocarcinoma/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/uso terapêutico , Incidência , Idoso , Adulto , Fatores de Risco , Países Escandinavos e Nórdicos/epidemiologia , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/efeitos adversos , Medição de Risco , Sistema de Registros
8.
Gastroenterology ; 166(1): 132-138.e3, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690771

RESUMO

BACKGROUND & AIMS: Antireflux treatment is recommended to reduce esophageal adenocarcinoma in patients with Barrett's esophagus. Antireflux surgery (fundoplication) counteracts gastroesophageal reflux of all types of carcinogenic gastric content and reduces esophageal acid exposure to a greater extent than antireflux medication (eg, proton pump inhibitors). We examined the hypothesis that antireflux surgery prevents esophageal adenocarcinoma to a larger degree than antireflux medication in patients with Barrett's esophagus. METHODS: This multinational and population-based cohort study included all patients with a diagnosis of Barrett's esophagus in any of the national patient registries in Denmark (2012-2020), Finland (1987-1996 and 2010-2020), Norway (2008-2020), or Sweden (2006-2020). Patients who underwent antireflux surgery were compared with nonoperated patients using antireflux medication. The risk of esophageal adenocarcinoma was calculated using multivariable Cox regression, providing hazard ratios (HRs) and 95% CIs adjusted for age, sex, country, calendar year, and comorbidity. RESULTS: The cohort consisted of 33,939 patients with Barrett's esophagus. Of these, 542 (1.6%) had undergone antireflux surgery. During up to 32 years of follow-up, the overall HR was not decreased in patients having undergone antireflux surgery compared with nonoperated patients using antireflux medication, but rather increased (adjusted HR, 1.9; 95% CI, 1.1-3.5). In addition, HRs did not decrease with longer follow-up, but instead increased for each follow-up category, from 1.8 (95% CI, 0.6-5.0) within 1-4 years of follow-up to 4.4 (95% CI, 1.4-13.5) after 10-32 years of follow-up. CONCLUSIONS: Patients with Barrett's esophagus who undergo antireflux surgery do not seem to have a lower risk of esophageal adenocarcinoma than those using antireflux medication.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/tratamento farmacológico , Esôfago de Barrett/cirurgia , Esôfago de Barrett/diagnóstico , Estudos de Coortes , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/prevenção & controle , Neoplasias Esofágicas/cirurgia , Adenocarcinoma/epidemiologia , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia , Fundoplicatura
9.
Gastroenterology ; 166(6): 1058-1068, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447738

RESUMO

BACKGROUND & AIMS: Follow-up (FU) strategies after endoscopic eradication therapy (EET) for Barrett's neoplasia do not consider the risk of mortality from causes other than esophageal adenocarcinoma (EAC). We aimed to evaluate this risk during long-term FU, and to assess whether the Charlson Comorbidity Index (CCI) can predict mortality. METHODS: We included all patients with successful EET from the nationwide Barrett registry in the Netherlands. Data were merged with National Statistics for accurate mortality data. We evaluated annual mortality rates (AMRs, per 1000 person-years) and standardized mortality ratio for other-cause mortality. Performance of the CCI was evaluated by discrimination and calibration. RESULTS: We included 1154 patients with a mean age of 64 years (±9). During median 59 months (p25-p75 37-91; total 6375 person-years), 154 patients (13%) died from other causes than EAC (AMR, 24.1; 95% CI, 20.5-28.2), most commonly non-EAC cancers (n = 58), cardiovascular (n = 31), or pulmonary diseases (n = 26). Four patients died from recurrent EAC (AMR, 0.5; 95% CI, 0.1-1.4). Compared with the general Dutch population, mortality was significantly increased for patients in the lowest 3 age quartiles (ie, age <71 years). Validation of CCI in our population showed good discrimination (Concordance statistic, 0.78; 95% CI, 0.72-0.84) and fair calibration. CONCLUSION: The other-cause mortality risk after successful EET was more than 40 times higher (48; 95% CI, 15-99) than the risk of EAC-related mortality. Our findings reveal that younger post-EET patients exhibit a significantly reduced life expectancy when compared with the general population. Furthermore, they emphasize the strong predictive ability of CCI for long-term mortality after EET. This straightforward scoring system can inform decisions regarding personalized FU, including appropriate cessation timing. (NL7039).


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Sistema de Registros , Humanos , Pessoa de Meia-Idade , Masculino , Esôfago de Barrett/cirurgia , Esôfago de Barrett/mortalidade , Esôfago de Barrett/patologia , Feminino , Países Baixos/epidemiologia , Idoso , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/cirurgia , Incidência , Adenocarcinoma/mortalidade , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia , Esofagoscopia/efeitos adversos , Causas de Morte , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Fatores de Tempo , Comorbidade
10.
Gastroenterology ; 166(6): 1020-1055, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38763697

RESUMO

BACKGROUND & AIMS: Barrett's esophagus (BE) is the precursor to esophageal adenocarcinoma (EAC). Endoscopic eradication therapy (EET) can be effective in eradicating BE and related neoplasia and has greater risk of harms and resource use than surveillance endoscopy. This clinical practice guideline aims to inform clinicians and patients by providing evidence-based practice recommendations for the use of EET in BE and related neoplasia. METHODS: The Grading of Recommendations Assessment, Development and Evaluation framework was used to assess evidence and make recommendations. The panel prioritized clinical questions and outcomes according to their importance for clinicians and patients, conducted an evidence review, and used the Evidence-to-Decision Framework to develop recommendations regarding the use of EET in patients with BE under the following scenarios: presence of (1) high-grade dysplasia, (2) low-grade dysplasia, (3) no dysplasia, and (4) choice of stepwise endoscopic mucosal resection (EMR) or focal EMR plus ablation, and (5) endoscopic submucosal dissection vs EMR. Clinical recommendations were based on the balance between desirable and undesirable effects, patient values, costs, and health equity considerations. RESULTS: The panel agreed on 5 recommendations for the use of EET in BE and related neoplasia. Based on the available evidence, the panel made a strong recommendation in favor of EET in patients with BE high-grade dysplasia and conditional recommendation against EET in BE without dysplasia. The panel made a conditional recommendation in favor of EET in BE low-grade dysplasia; patients with BE low-grade dysplasia who place a higher value on the potential harms and lower value on the benefits (which are uncertain) regarding reduction of esophageal cancer mortality could reasonably select surveillance endoscopy. In patients with visible lesions, a conditional recommendation was made in favor of focal EMR plus ablation over stepwise EMR. In patients with visible neoplastic lesions undergoing resection, the use of either endoscopic mucosal resection or endoscopic submucosal dissection was suggested based on lesion characteristics. CONCLUSIONS: This document provides a comprehensive outline of the indications for EET in the management of BE and related neoplasia. Guidance is also provided regarding the considerations surrounding implementation of EET. Providers should engage in shared decision making based on patient preferences. Limitations and gaps in the evidence are highlighted to guide future research opportunities.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Esofagoscopia , Esôfago de Barrett/cirurgia , Esôfago de Barrett/patologia , Humanos , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Ressecção Endoscópica de Mucosa/efeitos adversos , Esofagoscopia/normas , Esofagoscopia/efeitos adversos , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia , Gastroenterologia/normas , Medicina Baseada em Evidências/normas , Resultado do Tratamento , Tomada de Decisão Clínica , Técnicas de Ablação/efeitos adversos , Técnicas de Ablação/normas
11.
Hum Genomics ; 18(1): 3, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200573

RESUMO

INTRODUCTION: Circular RNAs (CircRNA) have emerged as an interest of research in recent years due to its regulatory role in various kinds of cancers of human body. Esophageal squamous cell carcinoma (ESCC) is one of the major disease subtype in Asian countries, including China. CircRNAs are formed by back-splicing covalently joined 3'- and 5'- ends rather than canonical splicing and are found to have binding affinity with miRNAs that conjointly contribute to oncogenesis. MATERIALS AND METHODS: 4 pairs of normal, cancer adjacent tissues and cancer tissues were analyzed by high-throughput RNA sequencing and 84 differentially upregulated circRNAs were detected in cancer tissues. hsa_circ_0032746 was silenced by siRNA and lentivirus and then further proliferation, migration and invasion were performed by CCK-8 and transwell assays. Bioinformatic analysis  predicted binding affinity of circRNA/miRNA/mRNA axis. RESULTS: After qPCR validation, we selected a novel upregulated hsa_circ_0032746 to explore its biogenetic functions which showed high expression in cancer tissues but not in cancer adjacent tissues. The clinicopathological relation of hsa_circ_0032746 showed positive correlation with the tumor location (P = 0.026) and gender (P = 0.05). We also predicted that hsa_circ_0032746 could sponge with microRNA. Bioinformatic analysis predicted 11 microRNA response element (MRE) sequences of hsa_circ_0032746 and dual luciferase reporter assay confirmed binding affinity with miR4270 evidencing further study of circRNA/miRNA role. The knockdown of hsa_circ_0032746 by siRNA and lentivirus demonstrated that proliferation, invasion and migration of ESCC were inhibited in vitro and vivo experiments. Bioinformatic analysis further predicted MCM3 as a target of miR-4270 and was found upregulated in ESCC upon validation. miR4270 mimic decreased the level of hsa_circ_0032746 and MCM3 while further rescue experiments demonstrated that hsa_circ_0032746 was dependent on miR4270/MCM3 axis on the development process of ESCC. CONCLUSION: We revealed for the first time that circ_0032746/mir4270/MCM3 contributes in proliferation, migration and invasion of ESCC and could have potential prognostic and therapeutic significance.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , RNA Circular/genética , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Carcinogênese/genética , MicroRNAs/genética , RNA Interferente Pequeno , Componente 3 do Complexo de Manutenção de Minicromossomo
12.
Hum Genomics ; 18(1): 37, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627859

RESUMO

OBJECTIVE: The causal associations of circulating lipids with Barrett's Esophagus (BE) and Esophageal Cancer (EC) has been a topic of debate. This study sought to elucidate the causality between circulating lipids and the risk of BE and EC. METHODS: We conducted two-sample Mendelian randomization (MR) analyses using single nucleotide polymorphisms (SNPs) of circulating lipids (n = 94,595 - 431,167 individuals), BE (218,792 individuals), and EC (190,190 individuals) obtained from the publicly available IEU OpenGWAS database. The robustness and reliability of the results were ensured by employing inverse-variance weighted (IVW), weighted median, MR-Egger, and MR-PRESSO methods. The presence of horizontal pleiotropy, heterogeneities, and stability of instrumental variables were assessed through MR-Egger intercept test, Cochran's Q test, and leave-one-out sensitivity analysis. Additionally, bidirectional MR and multivariable MR (MVMR) were performed to explore reverse causality and adjust for known confounders, respectively. RESULTS: None of the testing methods revealed statistically significant horizontal pleiotropy, directional pleiotropy, or heterogeneity. Univariate MR analyses using IVW indicated a robust causal relationship between increased triglycerides and BE (odds ratio [OR] = 1.79, p-value = 0.009), while no significant association with EC was observed. Inverse MR analysis indicated no evidence of reverse causality in the aforementioned outcomes. In MVMR analyses, elevated triglycerides (TRG) were significantly and positively associated with BE risk (OR = 1.79, p-value = 0.041). CONCLUSION: This MR study suggested that genetically increased triglycerides were closely related to an elevated risk of BE, potentially serving as a biomarker for the diagnosis of BE in the future.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/genética , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Neoplasias Esofágicas/genética , Triglicerídeos , Lipídeos , Estudo de Associação Genômica Ampla
13.
J Pathol ; 264(1): 55-67, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022845

RESUMO

Esophageal spindle-cell squamous cell carcinoma (ESS) is a rare biphasic neoplasm composed of a carcinomatous component (CaC) and a sarcomatous component (SaC). However, the genomic origin and gene signature of ESS remain unclear. Using whole-exome sequencing of laser-capture microdissection (LCM) tumor samples, we determined that CaC and SaC showed high mutational commonality, with the same top high-frequency mutant genes, mutation signatures, and tumor mutation burden; paired samples shared a median of 25.5% mutation sites. Focal gains were found on chromosomes 3q29, 5p15.33, and 11q13.3. Altered genes were mainly enriched in the RTK-RAS signaling pathway. Phylogenetic trees showed a monoclonal origin of ESS. The most frequently mutated oncogene in the trunk was TP53, followed by NFE2L2, KMT2D, and MUC16. Prognostic associations were found for CDC27, LRP2, APC, and SNAPC4. Our data highlight the monoclonal origin of ESS with TP53 as a potent driver oncogene, suggesting new targeted therapies and immunotherapies as treatment options. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sequenciamento do Exoma , Mutação , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Idoso , Biomarcadores Tumorais/genética , Microdissecção e Captura a Laser
14.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
15.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
16.
Exp Cell Res ; 439(1): 113963, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382806

RESUMO

The communication between tumor-derived exosomes and macrophages plays an important role in facilitating the progression of tumors. However, the regulatory mechanisms by which exosomes regulate tumor progression in esophageal squamous cell carcinoma (ESCC) have not been fully elucidated. We constructed a coculture system containing an ESCC cell line and macrophages using a Transwell chamber. We isolated exosomes from the conditioned medium of cancer cells, and characterized them with transmission electron microscopy and western blotting and used then to treat macrophages. We used co-immunoprecipitation to evaluate the interaction between hyaluronidase 1 (HYAL1) and Aurora B kinase (AURKB). We evaluated HYAL1 and AURKB expression in tissues and cells with quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blotting. We used RT-qPCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry to detect macrophage polarization. We assessed cell viability, invasion and migration with the cell counting kit-8 (CCK-8), Transwell and wound healing assays. HYAL1 was highly expressed in ESCC tissues and cells and cancer cell-derived exosomes, and exosomes can be delivered to macrophages through the cancer cell-derived exosomes. The exosomes extracted from HYAL1-overexpressed ESCC cells suppressed M1 macrophage polarization and induced M2 macrophage polarization, thereby promoting ESCC cell viability, invasion and migration. HYAL1 silencing in ESCC cells produced the opposite effects on macrophage polarization and cancer cell functions. We found that HYAL1 interacted with AURKB and further activated the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in macrophages. In conclusion, ESCC-derived exosomes containing HYAL1 facilitate M2 macrophage polarization by targeting AURKB to active the PI3K/AKT signaling pathway, which in turn promotes ESCC progression.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Exossomos , Hialuronoglucosaminidase , Macrófagos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Humanos , Exossomos/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Macrófagos/metabolismo , Macrófagos/patologia , Linhagem Celular Tumoral , Movimento Celular , Transdução de Sinais , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Proliferação de Células , Polaridade Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ativação de Macrófagos , Animais , Masculino
17.
Exp Cell Res ; 435(1): 113925, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211680

RESUMO

MicroRNAs (miRNAs) can function as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target genes. The aberrant expression of miRNAs in neoplasm is extensively associated with tumorigenesis and cancer progression, including esophageal squamous cell carcinoma (ESCC). Our previous investigation has identified the oncogenic roles of Peroxiredoxin2 (PRDX2) in ESCC progression; however, its upstream regulatory mechanism remains to be elucidated. By merging the prediction results from miRWalk2.0 and miRNA differential expression analysis results based on The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) database, eight miRNA candidates were predicted to be the potential regulatory miRNAs of PRDX2, followed by further identification of miR-92a-2-5p as the putative miRNA of PRDX2. Subsequent functional studies demonstrated that miR-92a-2-5p can suppress ESCC cell proliferation and migration, as well as tumor growth in subcutaneous tumor xenograft models, which might be mediated by the suppression of AKT/mTOR and Wnt3a/ß-catenin signaling pathways upon miR-92a-2-5p mimic transfection condition. These data revealed the tumor suppressive functions of miR-92a-2-5p in ESCC by targeting PRDX2.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Animais
18.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409522

RESUMO

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Ceratodermia Palmar e Plantar , Humanos , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transdução de Sinais/genética , Mutação , Neoplasias Esofágicas/genética
19.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076047

RESUMO

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação , Estresse Oxidativo , Apoptose , Glicólise
20.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328063

RESUMO

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Movimento Celular , Neoplasias Esofágicas/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa