Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Res ; 450: 114498, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37201892

RESUMO

The medial geniculate body (MGB) of the thalamus is an obligatory relay for auditory processing. A breakdown of adaptive filtering and sensory gating at this level may lead to multiple auditory dysfunctions, while high-frequency stimulation (HFS) of the MGB might mitigate aberrant sensory gating. To further investigate the sensory gating functions of the MGB, this study (i) recorded electrophysiological evoked potentials in response to continuous auditory stimulation, and (ii) assessed the effect of MGB HFS on these responses in noise-exposed and control animals. Pure-tone sequences were presented to assess differential sensory gating functions associated with stimulus pitch, grouping (pairing), and temporal regularity. Evoked potentials were recorded from the MGB and acquired before and after HFS (100 Hz). All animals (unexposed and noise-exposed, pre- and post-HFS) showed gating for pitch and grouping. Unexposed animals also showed gating for temporal regularity not found in noise-exposed animals. Moreover, only noise-exposed animals showed restoration comparable to the typical EP amplitude suppression following MGB HFS. The current findings confirm adaptive thalamic sensory gating based on different sound characteristics and provide evidence that temporal regularity affects MGB auditory signaling.


Assuntos
Córtex Auditivo , Tálamo , Ratos , Animais , Tálamo/fisiologia , Corpos Geniculados/fisiologia , Estimulação Acústica , Sensação , Filtro Sensorial , Córtex Auditivo/fisiologia
2.
Ann Intensive Care ; 12(1): 111, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480063

RESUMO

About 80% of patients resuscitated from CA are comatose at ICU admission and nearly 50% of survivors are still unawake at 72 h. Predicting neurological outcome of these patients is important to provide correct information to patient's relatives, avoid disproportionate care in patients with irreversible hypoxic-ischemic brain injury (HIBI) and inappropriate withdrawal of care in patients with a possible favorable neurological recovery. ERC/ESICM 2021 algorithm allows a classification as "poor outcome likely" in 32%, the outcome remaining "indeterminate" in 68%. The crucial question is to know how we could improve the assessment of both unfavorable but also favorable outcome prediction. Neurophysiological tests, i.e., electroencephalography (EEG) and evoked-potentials (EPs) are a non-invasive bedside investigations. The EEG is the record of brain electrical fields, characterized by a high temporal resolution but a low spatial resolution. EEG is largely available, and represented the most widely tool use in recent survey examining current neuro-prognostication practices. The severity of HIBI is correlated with the predominant frequency and background continuity of EEG leading to "highly malignant" patterns as suppression or burst suppression in the most severe HIBI. EPs differ from EEG signals as they are stimulus induced and represent the summated activities of large populations of neurons firing in synchrony, requiring the average of numerous stimulations. Different EPs (i.e., somato sensory EPs (SSEPs), brainstem auditory EPs (BAEPs), middle latency auditory EPs (MLAEPs) and long latency event-related potentials (ERPs) with mismatch negativity (MMN) and P300 responses) can be assessed in ICU, with different brain generators and prognostic values. In the present review, we summarize EEG and EPs signal generators, recording modalities, interpretation and prognostic values of these different neurophysiological tools. Finally, we assess the perspective for futures neurophysiological investigations, aiming to reduce prognostic uncertainty in comatose and disorders of consciousness (DoC) patients after CA.

3.
Artigo em Chinês | WPRIM | ID: wpr-588595

RESUMO

This paper mainly introduces the design for system of evoked potentials detecting based on technology of mobile computing platform and CF interface. The CF+ card in IO mode based on the mobile computing equipments and its CF interface are designed, and the driver and application software on Windows CE platform are also written at the same time. The system with these hardware and software can perform the task of generating evoked signals and sampling evoked potentials signals. Simple hardware design and perfect software support are available in this system, which can meet the research needs in many fields of evoked potentials signals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa