Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885310

RESUMO

Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate the Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations that have shaped the Chinese paternal landscape. First, the expansion of early East Asians and millet farmers from the Yellow River Basin predominantly carrying O2/D subclades significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Second, the dispersal of rice farmers from the Yangtze River Valley carrying O1 and certain O2 sublineages reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Third, the Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourth, the J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.


Assuntos
Povo Asiático , Cromossomos Humanos Y , Migração Humana , Humanos , China , Povo Asiático/genética , Masculino , Cromossomos Humanos Y/genética , DNA Antigo/análise , Herança Paterna , Filogenia , População do Leste Asiático
2.
Annu Rev Genomics Hum Genet ; 23: 499-521, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35576571

RESUMO

To embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals' pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans' evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and globalgovernance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts.


Assuntos
População Negra , Genômica , Evolução Biológica , Biologia Computacional , Humanos , Farmacogenética
3.
Plant J ; 114(2): 246-261, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738111

RESUMO

Like other organisms, brown algae are subject to diseases caused by bacteria, fungi, and viruses. Brown algal immunity mechanisms are not well characterized; however, there is evidence suggesting that pathogen receptors exist in brown algae. One key protein family likely associated with brown algal innate immunity possesses an NB-ARC domain analogous to innate immune proteins in plants and animals. In this study, we conducted an extensive survey of NB-ARC genes in brown algae and obtained insights into the domain organization and evolutionary history of the encoded proteins. Our data show that brown algae possess an ancient NB-ARC-tetratricopeptide repeat (NB-TPR) domain architecture. We identified an N-terminal effector domain, the four-helix bundle, which was not previously found associated with NB-ARC domains. The phylogenetic tree including NB-ARC domains from all kingdoms of life suggests the three clades of brown algal NB-TPRs are likely monophyletic, whereas their TPRs seem to have distinct origins. One group of TPRs exhibit intense exon shuffling, with various alternative splicing and diversifying selection acting on them, suggesting exon shuffling is an important mechanism for evolving ligand-binding specificities. The reconciliation of gene duplication and loss events of the NB-ARC genes reveals that more independent gene gains than losses have occurred during brown algal evolution, and that tandem duplication has played a major role in the expansion of NB-ARC genes. Our results substantially enhance our understanding of the evolutionary history and exon shuffling mechanisms of the candidate innate immune repertoire of brown algae.


Assuntos
Processamento Alternativo , Phaeophyceae , Animais , Filogenia , Processamento Alternativo/genética , Proteínas/genética , Éxons , Phaeophyceae/genética , Evolução Molecular
4.
BMC Genomics ; 25(1): 510, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783193

RESUMO

Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.


Assuntos
Carthamus tinctorius , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Genoma de Planta , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Genômica/métodos , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular
5.
BMC Genomics ; 25(1): 350, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589807

RESUMO

BACKGROUND: In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS: A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION: Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.


Assuntos
Inositol 1,4,5-Trifosfato , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Plantas/genética , Plantas/metabolismo , Evolução Molecular
6.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995370

RESUMO

Wolbachia is one of the most common bacterial endosymbionts, which is frequently found in numerous arthropods and nematode taxa. Wolbachia infections can have a strong influence on the evolutionary dynamics of their hosts since these bacteria are reproductive manipulators that affect the fitness and life history of their host species for their own benefit. Host-symbiont interactions with Wolbachia are perhaps best studied in the model organism Drosophila melanogaster, which is naturally infected with at least 5 different variants among which wMel and wMelCS are the most frequent ones. Comparisons of infection types between natural flies and long-term lab stocks have previously indicated that wMelCS represents the ancestral type, which was only very recently replaced by the nowadays dominant wMel in most natural populations. In this study, we took advantage of recently sequenced museum specimens of D. melanogaster that have been collected 90 to 200 yr ago in Northern Europe to test this hypothesis. Our comparison to contemporary Wolbachia samples provides compelling support for the replacement hypothesis. Our analyses show that sequencing data from historic museum specimens and their bycatch are an emerging and unprecedented resource to address fundamental questions about evolutionary dynamics in host-symbiont interactions. However, we also identified contamination with DNA from crickets that resulted in co-contamination with cricket-specific Wolbachia in several samples. These results underpin the need for rigorous quality assessments of museomic data sets to account for contamination as a source of error that may strongly influence biological interpretations if it remains undetected.


Assuntos
Drosophila melanogaster , Wolbachia , Animais , Drosophila melanogaster/genética , Wolbachia/genética , Museus , Evolução Biológica , Reprodução , Simbiose
7.
J Mol Evol ; 92(3): 286-299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634872

RESUMO

The genus Macaca is widely distributed, occupies a variety of habitats, shows diverse phenotypic characteristics, and is one of the best-studied genera of nonhuman primates. Here, we reported five re-sequencing Macaca genomes, including one M. cyclopis, one M. fuscata, one M. thibetana, one M. silenus, and one M. sylvanus. Together with published genomes of other macaque species, we combined 20 genome sequences of 10 macaque species to investigate the gene introgression and genetic differences among the species. The network analysis of the SNV-fragment trees indicates a reticular phylogeny of macaque species. Combining the results from various analytical methods, we identified extensive ancient introgression events among macaque species. The multiple introgression signals between different species groups were also observed, such as between fascicularis group species and silenus group species. However, gene flow signals between fascicularis and sinica group were not as strong as those between fascicularis group and silenus group. On the other hand, the unidirect gene flow in M. arctoides probably occurred between the progenitor of M. arctoides and the common ancestor of fascicularis group. Our study also shows that the genetic backgrounds and genetic diversity of different macaques vary dramatically among species, even among populations of the same species. In conclusion, using whole genome sequences and multiple methods, we have studied the evolutionary history of the genus Macaca and provided evidence for extensive introgression among the species.


Assuntos
Evolução Molecular , Fluxo Gênico , Genoma , Macaca , Filogenia , Animais , Macaca/genética , Genoma/genética , Introgressão Genética , Genômica/métodos , Evolução Biológica , Variação Genética/genética
8.
Mol Genet Genomics ; 299(1): 11, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381254

RESUMO

Sequence capture is a genomic technique that selectively enriches target sequences before high throughput next-generation sequencing, to generate specific sequences of interest. Off-target or 'bycatch' data are often discarded from capture experiments, but can be leveraged to address evolutionary questions under some circumstances. Here, we investigated the effects of missing data on a variety of evolutionary analyses using bycatch from an exon capture experiment on the global pest moth, Helicoverpa armigera. We added > 200 new samples from across Australia in the form of mitogenomes obtained as bycatch from targeted sequence capture, and combined these into an additional larger dataset to total > 1000 mitochondrial cytochrome c oxidase subunit I (COI) sequences across the species' global distribution. Using discriminant analysis of principal components and Bayesian coalescent analyses, we showed that mitogenomes assembled from bycatch with up to 75% missing data were able to return evolutionary inferences consistent with higher coverage datasets and the broader literature surrounding H. armigera. For example, low-coverage sequences broadly supported the delineation of two H. armigera subspecies and also provided new insights into the potential for geographic turnover among these subspecies. However, we also identified key effects of dataset coverage and composition on our results. Thus, low-coverage bycatch data can offer valuable information for population genetic and phylodynamic analyses, but caution is required to ensure the reduced information does not introduce confounding factors, such as sampling biases, that drive inference. We encourage more researchers to consider maximizing the potential of the targeted sequence approach by examining evolutionary questions with their off-target bycatch where possible-especially in cases where no previous mitochondrial data exists-but recommend stratifying data at different genome coverage thresholds to separate sampling effects from genuine genomic signals, and to understand their implications for evolutionary research.


Assuntos
Agricultura , Evolução Biológica , Teorema de Bayes , Austrália , Éxons
9.
Mol Ecol ; : e17514, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206888

RESUMO

Theropithecus gelada, the last surviving species of this genus, occupy a unique and highly specialised ecological niche in the Ethiopian highlands. A subdivision into three geographically defined populations (Northern, Central and Southern) has been tentatively proposed for this species on the basis of genetic analyses, but genomic data have been investigated only for two of these groups (Northern and Central). Here we combined newly generated whole genome sequences of individuals sampled from the population living south of the East Africa Great Rift Valley with available data from the other two gelada populations to reconstruct the evolutionary history of the species. Integrating genomic and paleoclimatic data we found that gene-flow across populations and with Papio species tracked past climate changes. The isolation and climatic conditions experienced by Southern geladas during the Holocene shaped local diversity and generated diet-related genomic signatures.

10.
Mol Ecol ; : e17277, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279695

RESUMO

Chromosomal inversions can play an important role in divergence and reproductive isolation by building and maintaining distinct allelic combinations between evolutionary lineages. Alternatively, they can take the form of balanced polymorphisms that segregate within populations until one arrangement becomes fixed. Many questions remain about how inversion polymorphisms arise, how they are maintained over the long term, and ultimately, whether and how they contribute to speciation. The long-snouted seahorse (Hippocampus guttulatus) is genetically subdivided into geographic lineages and marine-lagoon ecotypes, with shared structural variation underlying lineage and ecotype divergence. Here, we aim to characterize structural variants and to reconstruct their history and suspected role in ecotype formation. We generated a near chromosome-level genome assembly and described genome-wide patterns of diversity and divergence through the analysis of 112 whole-genome sequences from Atlantic, Mediterranean, and Black Sea populations. By also analysing linked-read sequencing data, we found evidence for two chromosomal inversions that were several megabases in length and showed contrasting allele frequency patterns between lineages and ecotypes across the species range. We reveal that these inversions represent ancient intraspecific polymorphisms, one likely being maintained by divergent selection and the other by pseudo-overdominance. A possible selective coupling between the two inversions was further supported by the absence of specific haplotype combinations and a putative functional interaction between the two inversions in reproduction. Lastly, we detected gene flux eroding divergence between inverted alleles at varying levels for the two inversions, with a likely impact on their dynamics and contribution to divergence and speciation.

11.
Mol Phylogenet Evol ; 199: 108144, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972494

RESUMO

Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic âˆ¼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.


Assuntos
Himenópteros , Filogenia , Filogeografia , Animais , Himenópteros/genética , Himenópteros/classificação , Análise de Sequência de DNA , Teorema de Bayes
12.
Mol Phylogenet Evol ; 190: 107958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914032

RESUMO

Species delimitation is a powerful approach to assist taxonomic decisions in challenging taxa where species boundaries are hard to establish. European taxa of the blind mole rats (genus Nannospalax) display small morphological differences and complex chromosomal evolution at a shallow evolutionary divergence level. Previous analyses led to the recognition of 25 'forms' in their distribution area. We provide a comprehensive framework to improve knowledge on the evolutionary history and revise the taxonomy of European blind mole rats based on samples from all but three of the 25 forms. We sequenced two nuclear-encoded genetic regions and the whole mitochondrial cytochrome b gene for phylogenetic tree reconstructions using concatenation and coalescence-based species-tree estimations. The phylogenetic analyses confirmed that Aegean N. insularis belongs to N. superspecies xanthodon, and that it represents the second known species of this superspecies in Europe. Mainland taxa reached Europe from Asia Minor in two colonisation events corresponding to two superspecies-level taxa: N. superspecies monticola (taxon established herewith) reached Europe c. 2.1 million years ago (Mya) and was followed by N. superspecies leucodon (re-defined herewith) c. 1.5 Mya. Species delimitation allowed the clarification of the taxonomic contents of the above superspecies. N. superspecies monticola contains three species geographically confined to the western periphery of the distribution of blind mole rats, whereas N. superspecies leucodon is more speciose with six species and several additional subspecies. The observed geographic pattern hints at a robust peripatric speciation process and rapid chromosomal evolution. The present treatment is thus regarded as the minimum taxonomic content of each lineage, which can be further refined based on other sources of information such as karyological traits, crossbreeding experiments, etc. The species delimitation models also allowed the recognition of a hitherto unnamed blind mole rat taxon from Albania, described here as a new subspecies.


Assuntos
Mamíferos , Ratos-Toupeira , Animais , Filogenia , Ratos-Toupeira/genética , Muridae , Ásia
13.
Mol Phylogenet Evol ; 194: 108041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401813

RESUMO

Understanding the genetic diversity and evolutionary history of species is crucial for their conservation and management. In this study, we investigated the genetic diversity and phylogenetic relationships among Eubranchipus species occurring in Japan. Phylogenetic analyses revealed that nuclear and mitochondrial data yield incompatible results. In E. uchidai, nuclear data support the monophyly of the Shimokita area, while mitochondrial data indicate a clustering of Higashidori2 individuals with Hokkaido (Ishikari and Wakkanai) E. uchidai. Similar incongruences were observed in E. hatanakai, where nuclear data favor the monophyly of the Chokai area, while mitochondrial data cluster some Chokai pool 3 individuals with Aizu individuals. These incompatibilities might be caused by mitochondrial gene flow. The findings emphasize the importance of considering both nuclear and mitochondrial data during phylogenetic studies and provide valuable insights into the complex dynamics of migration and genetic exchange in Eubranchipus species.


Assuntos
DNA Mitocondrial , Genômica , Humanos , Filogenia , Japão , DNA Mitocondrial/genética , Análise de Sequência de DNA
14.
J Exp Bot ; 75(1): 152-167, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769205

RESUMO

Extensins (EXTs), a class of hydroxyproline-rich glycoprotein with multiple Ser-Pro3-5 motifs, are known to play roles in cell wall reinforcement and environmental responses. EXTs with repetitive Tyr-X-Tyr (YXY) motifs for crosslinking are referred as crosslinking EXTs. Our comprehensive study spanned 194 algal and plant species, categorizing EXTs into seven subfamilies: classical extensins (EXT I and II), arabinogalactan-protein extensins (AGP-EXTs), proline-rich extensin-like receptor kinases (PERKs), leucine-rich repeat extensins (LRX I and II), formin homology (FH) domain-containing extensins (FH-EXTs), proline-rich, arabinogalactan proteins, conserved cysteines (PAC) domain-containing extensins (PAC I and II), and eight-cysteine motif (8CM)-containing extensins (8CM-EXTs). In the examined dataset, EXTs were detected ubiquitously in plants but infrequently in algae, except for one Coccomyxa and four Chlamydomonadales species. No crosslinking EXTs were found in Poales or certain Zingiberales species. Notably, the previously uncharacterized EXT II, PAC II, and liverwort-specific 8CM-EXTs were found to be crosslinking EXTs. EXT II, featuring repetitive YY motifs instead of the conventional YXY motif, was exclusively identified in Solanaceae. Furthermore, tandem genes encoding distinctive 8CM-EXTs specifically expressed in the germinating spores of Marchantia polymorpha. This updated classification of EXT types allows us to propose a plausible evolutionary history of EXT genes during the course of plant evolution.


Assuntos
Proteínas de Plantas , Plantas , Sequência de Aminoácidos , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Glicoproteínas/metabolismo , Parede Celular/metabolismo , Prolina/metabolismo
15.
Hum Genomics ; 17(1): 3, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721228

RESUMO

BACKGROUND: Fine-scale genetic structure of ethnolinguistically diverse Chinese populations can fill the gap in the missing diversity and evolutionary landscape of East Asians, particularly for anthropologically informed Chinese minorities. Hmong-Mien (HM) people were one of the most significant indigenous populations in South China and Southeast Asia, which were suggested to be the descendants of the ancient Yangtze rice farmers based on linguistic and archeological evidence. However, their deep population history and biological adaptative features remained to be fully characterized. OBJECTIVES: To explore the evolutionary and adaptive characteristics of the Miao people, we genotyped genome-wide SNP data in Guizhou HM-speaking populations and merged it with modern and ancient reference populations via a comprehensive population genetic analysis and evolutionary admixture modeling. RESULTS: The overall genetic admixture landscape of Guizhou Miao showed genetic differentiation between them and other linguistically diverse Guizhou populations. Admixture models further confirmed that Miao people derived their primary ancestry from geographically close Guangxi Gaohuahua people. The estimated identity by descent and effective population size confirmed a plausible population bottleneck, contributing to their unique genetic diversity and population structure patterns. We finally identified several natural selection candidate genes associated with several biological pathways. CONCLUSIONS: Guizhou Miao possessed a specific genetic structure and harbored a close genetic relationship with geographically close southern Chinese indigenous populations and Guangxi historical people. Miao people derived their major ancestry from geographically close Guangxi Gaohuahua people and experienced a plausible population bottleneck which contributed to the unique pattern of their genetic diversity and structure. Future ancient DNA from Shijiahe and Qujialing will provide new insights into the origin of the Miao people.


Assuntos
Adaptação Biológica , Povo Asiático , Humanos , Haplótipos/genética , Alelos , China , Povo Asiático/genética
16.
Arch Microbiol ; 206(7): 329, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940837

RESUMO

The ability of cold-adapted bacteria to survive in extreme cold and diverse temperatures is due to their unique attributes like cell membrane stability, up-regulation of peptidoglycan biosynthesis, increased production of extracellular polymeric substances, and expansion of membrane pigment. Various cold-adapted proteins, including ice-nucleating proteins (INPs), antifreeze proteins (AFPs), cold shock proteins (Csps), and cold-acclimated proteins (CAPs), help the bacteria to survive in these environments. To sustain cells from extreme cold conditions and maintain stability in temperature fluctuations, survival strategies at the molecular level and their mechanism play significant roles in adaptations in cryospheric conditions. Furthermore, cold shock domains present in the multifunctional cold shock proteins play crucial roles in their adaptation strategies. The considerable contribution of lipopeptides, osmolytes, and membrane pigments plays an integral part in their survival in extreme environments. This review summarizes the evolutionary history of cold-adapted bacteria and their molecular and cellular adaptation strategies to thrive in harsh cold environments. It also discusses the importance of carotenoids produced, lipid composition, cryoprotectants, proteins, and chaperones related to this adaptation. Furthermore, the functions and mechanisms of adaptations within the cell are discussed briefly. One can utilize and explore their potential in various biotechnology applications and their evolutionary journey by knowing the inherent mechanism of their molecular and cellular adaptation to cold climatic conditions. This review will help all branches of the life science community understand the basic microbiology of psychrophiles and their hidden prospect in life science research.


Assuntos
Bactérias , Congelamento , Bactérias/metabolismo , Bactérias/genética , Ambientes Extremos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Temperatura Baixa , Adaptação Fisiológica , Proteínas Anticongelantes/metabolismo , Fenômenos Fisiológicos Bacterianos , Aclimatação , Proteínas e Peptídeos de Choque Frio/metabolismo , Proteínas e Peptídeos de Choque Frio/genética
17.
Ann Bot ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136155

RESUMO

BACKGROUND AND AIMS: Amphistomy is a potential method for increasing photosynthetic rate; however, the latitudinal gradients of stomatal density across amphistomatous species and their drivers remain unknown. METHODS: Here, the adaxial stomatal density (SDad) and abaxial stomatal density (SDab) of 486 amphistomatous species-site combinations, belonging to 32 plant families, were collected from China, and their total stomatal density (SDtotal) and stomatal ratio (SR) were calculated. KEY RESULTS: Overall, these four stomatal traits did not show significant phylogenetic signals. There were no significant differences in SDab and SDtotal between woody and herbaceous species, but SDad and SR were higher in woody species than in herbaceous species. Besides, a significantly positive relationship between SDab and SDad was observed. We also found that stomatal density (including SDab, SDad, and SDtotal) decreased with latitude while SR increased with latitude, and temperature seasonality was the most important environmental factor driving it. Besides, evolutionary history (represented by both phylogeny and species) explained about 10-22 fold more of the variation in stomatal traits than the present-day environment (65.2%-71.1% vs. 2.9%-6.8%). CONCLUSIONS: Our study extended our knowledge of trait-environment relationships and highlighted the importance of evolutionary history in driving stomatal trait variability.

18.
J Anim Ecol ; 93(8): 1160-1171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922857

RESUMO

Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18-years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast). Butterflies shifted their centroids at a mean rate of 4.87 km year-1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges. Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity. Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges. We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges. This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.


Assuntos
Distribuição Animal , Evolução Biológica , Borboletas , Mudança Climática , Animais , Borboletas/fisiologia , Filogenia , Meio-Oeste dos Estados Unidos
19.
Am J Bot ; : e16385, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113241

RESUMO

PREMISE: Globally, barriers triggered by climatic changes have caused habitat fragmentation and population allopatric divergence. Across North America, oscillations during the Quaternary have played important roles in the distribution of wildlife. Notably, diverse plant species from the Baja California Peninsula in western North America, isolated during the Pleistocene glacial-interglacial cycles, exhibit strong genetic structure and highly concordant divergent lineages across their ranges. A representative plant genus of the peninsula is Yucca, with Y. valida having the widest range. Although a dominant species, it has an extensive distribution discontinuity between 26° N and 27° N, suggesting restricted gene flow. Moreover, historical distribution models indicate the absence of an area with suitable conditions for the species during the Last Interglacial, making it an interesting model for studying genetic divergence. METHODS: We assembled 4411 SNPs from 147 plants of Y. valida throughout its range to examine its phylogeography to identify the number of genetic lineages, quantify their genetic differentiation, reconstruct their demographic history and estimate the age of the species. RESULTS: Three allopatric lineages were identified based on the SNPs. Our analyses support that genetic drift is the driver of genetic differentiation among these lineages. We estimated an age of less than 1 million years for the common ancestor of Y. valida and its sister species. CONCLUSIONS: Habitat fragmentation caused by climatic changes, low dispersal, and an extensive geographical range gap acted as cumulative mechanisms leading to allopatric divergence in Y. valida.

20.
J Hered ; 115(1): 32-44, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37846510

RESUMO

Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the 'Alala, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if 'Alala had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when 'Alala were more numerous, to samples taken between 1973 and 1998, when 'Alala population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.


Assuntos
Corvos , Humanos , Animais , Corvos/genética , Variação Genética , Havaí , Endogamia , Genoma , Espécies em Perigo de Extinção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa