Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Mol Cell ; 82(6): 1123-1139.e8, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35182481

RESUMO

A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/ß, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.


Assuntos
Proteínas F-Box , Proteína 7 com Repetições F-Box-WD , Neoplasias , Animais , Linhagem Celular Tumoral , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteínas de Homeodomínio/genética , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Tirosina Fosfatases/genética , Ubiquitina/metabolismo
2.
J Biol Chem ; 300(7): 107408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796066

RESUMO

The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.


Assuntos
Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-myc , Humanos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ligação Proteica , Células HEK293 , Domínios Proteicos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/química , Proteínas de Ligação a DNA
3.
Mol Cancer ; 22(1): 158, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777742

RESUMO

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases (PP), which have been linked to many vital cellular processes and organogenesis pathways. The four family members of this PP family possess transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of PP, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo. Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel potential breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Serina
4.
Development ; 147(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31806659

RESUMO

The GATA and PAX-SIX-EYA-DACH transcriptional networks (PSEDNs) are essential for proper development across taxa. Here, we demonstrate novel PSEDN roles in vivo in Drosophila hematopoiesis and in human erythropoiesis in vitro Using Drosophila genetics, we show that PSEDN members function with GATA to block lamellocyte differentiation and maintain the prohemocyte pool. Overexpression of human SIX1 stimulated erythroid differentiation of human erythroleukemia TF1 cells and primary hematopoietic stem-progenitor cells. Conversely, SIX1 knockout impaired erythropoiesis in both cell types. SIX1 stimulation of erythropoiesis required GATA1, as SIX1 overexpression failed to drive erythroid phenotypes and gene expression patterns in GATA1 knockout cells. SIX1 can associate with GATA1 and stimulate GATA1-mediated gene transcription, suggesting that SIX1-GATA1 physical interactions contribute to the observed functional interactions. In addition, both fly and human SIX proteins regulated GATA protein levels. Collectively, our findings demonstrate that SIX proteins enhance GATA function at multiple levels, and reveal evolutionarily conserved cooperation between the GATA and PSEDN networks that may regulate developmental processes beyond hematopoiesis.


Assuntos
Proteínas de Drosophila/metabolismo , Eritropoese/genética , Redes Reguladoras de Genes , Hematopoese/genética , Animais , Linhagem Celular Tumoral , Drosophila , Fatores de Transcrição GATA/metabolismo , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição Box Pareados/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37830236

RESUMO

Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.

6.
Crit Rev Biochem Mol Biol ; 55(4): 372-385, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32727223

RESUMO

The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Humanos , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases/genética , Transativadores/genética
7.
Dev Biol ; 469: 68-79, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080252

RESUMO

MicroRNAs (miRNAs), short non-coding RNAs, which act post-transcriptionally to regulate gene expression, are of widespread significance during development and disease, including muscle disease. Advances in sequencing technology and bioinformatics led to the identification of a large number of miRNAs in vertebrates and other species, however, for many of these miRNAs specific roles have not yet been determined. LNA in situ hybridisation has revealed expression patterns of somite-enriched miRNAs, here we focus on characterising the functions of miR-128. We show that antagomiR-mediated knockdown (KD) of miR-128 in developing chick somites has a negative impact on skeletal myogenesis. Computational analysis identified the transcription factor EYA4 as a candidate target consistent with the observation that miR-128 and EYA4 display similar expression profiles. Luciferase assays confirmed that miR-128 interacts with the EYA4 3'UTR. In vivo experiments also suggest that EYA4 is regulated by miR-128. EYA4 is a member of the PAX-SIX-EYA-DACH (PSED) network of transcription factors. Therefore, we identified additional candidate miRNA binding sites in the 3'UTR of SIX1/4, EYA1/2/3 and DACH1. Using the miRanda algorithm, we found sites for miR-128, as well as for other myogenic miRNAs, miR-1a, miR-206 and miR-133a, some of these were experimentally confirmed as functional miRNA target sites. Our results reveal that miR-128 is involved in regulating skeletal myogenesis by directly targeting EYA4 with indirect effects on other PSED members, including SIX4 and PAX3. Hence, the inhibitory effect on myogenesis observed after miR-128 knockdown was rescued by concomitant knockdown of PAX3. Moreover, we show that the PSED network of transcription factors is co-regulated by multiple muscle-enriched microRNAs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Animais , Embrião de Galinha , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Somitos/embriologia , Somitos/metabolismo , Fatores de Transcrição/metabolismo
8.
Stem Cells ; 39(7): 853-865, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594762

RESUMO

Glioblastoma (GBM) ranks among the most lethal of human malignancies with GBM stem cells (GSCs) that contribute to tumor growth and therapeutic resistance. Identification and isolation of GSCs continue to be a challenge, as definitive methods to purify these cells for study or targeting are lacking. Here, we leveraged orthogonal in vitro and in vivo phage display biopanning strategies to isolate a single peptide with GSC-specific binding properties. In silico analysis of this peptide led to the isolation of EYA1 (Eyes Absent 1), a tyrosine phosphatase and transcriptional coactivator. Validating the phage discovery methods, EYA1 was preferentially expressed in GSCs compared to differentiated tumor progeny. MYC is a central mediator of GSC maintenance but has been resistant to direct targeting strategies. Based on correlation and colocalization of EYA1 and MYC, we interrogated a possible interaction, revealing binding of EYA1 to MYC and loss of MYC expression upon targeting EYA1. Supporting a functional role for EYA1, targeting EYA1 expression decreased GSC proliferation, migration, and self-renewal in vitro and tumor growth in vivo. Collectively, our results suggest that phage display can identify novel therapeutic targets in stem-like tumor cells and that an EYA1-MYC axis represents a potential therapeutic paradigm for GBM.


Assuntos
Bacteriófagos , Neoplasias Encefálicas , Glioblastoma , Bacteriófagos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
9.
J Am Soc Nephrol ; 32(11): 2815-2833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716243

RESUMO

BACKGROUND: Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS: We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS: Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS: Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/fisiologia , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Néfrons/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular , Autorrenovação Celular , Imunoprecipitação da Cromatina , Técnicas de Introdução de Genes , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Complexos Multiproteicos , Proteínas Nucleares/genética , Mapeamento de Interação de Proteínas , Proteínas Tirosina Fosfatases/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcriptoma
10.
Dev Dyn ; 250(10): 1450-1462, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33715274

RESUMO

BACKGROUND: Eya2 expression during mouse development has been studied by in situ hybridization and it has been shown to be involved skeletal muscle development and limb formation. Here, we generated Eya2 knockout (Eya2- ) and a lacZ knockin reporter (Eya2lacZ ) mice and performed a detailed expression analysis for Eya2lacZ at different developmental stages to trace Eya2lacZ -positive cells in Eya2-null mice. We describe that Eya2 is not only expressed in cranial sensory and dorsal root ganglia, retina and olfactory epithelium, and somites as previously reported, but also Eya2 is specifically detected in other organs during mouse development. RESULTS: We found that Eya2 is expressed in ocular and trochlear motor neurons. In the inner ear, Eya2lacZ is specifically expressed in differentiating hair cells in both vestibular and cochlear sensory epithelia of the inner ear and Eya2-/- or Eya2lacZ/lacZ mice displayed mild hearing loss. Furthermore, we detected Eya2 expression during both salivary gland and thymus development and Eya2-null mice had a smaller thymus. CONCLUSIONS: As Eya2 is coexpressed with other members of the Eya family genes, these results together highlight that Eya2 as a potential regulator may act synergistically with other Eya genes to regulate the differentiation of the inner ear sensory hair cells and the formation of the salivary gland and thymus.


Assuntos
Orelha Interna/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Perda Auditiva/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Diferenciação Celular/fisiologia , Orelha Interna/embriologia , Perda Auditiva/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(1): 129-138, 2022 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545373

RESUMO

Branchio-oto syndrome (BOS)/branchio-oto-renal syndrome (BORS) is a kind of autosomal dominant heterogeneous disorder. These diseases are mainly characterized by hearing impairment and abnormal phenotype of ears, accompanied by renal malformation and branchial cleft anomalies including cyst or fistula, with an incidence of 1/40 000 in human population. Otic anormalies are one of the most obvious clinical manifestations of BOS/BORS, including deformities of external, middle, inner ears and hearing loss with conductive, sensorineural or mix, ranging from mild to profound loss. Temporal bone imaging could assist in the diagnosis of middle ear and inner ear malformations for clinicians. Multiple methods including direct sequencing combined with next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), or array-based comparative genomic hybridization (aCGH) can effectively screen and identify pathogenic genes and/or variation types of BOS/BORS. About 40% of patients with BOS/BORS carry aberrations of EYA1 gene which is the most important cause of BOS/BORS. A total of 240 kinds of pathogenic variations of EYA1 have been reported in different populations so far, including frameshift, nonsense, missense, aberrant splicing, deletion and complex rearrangements. Human Endogenous Retroviral sequences (HERVs) may play an important role in mediating EYA1 chromosomal fragment deletion mutations caused by non-allelic homologous recombination. EYA1 encodes a phosphatase-transactivator cooperated with transcription factors of SIX1, participates in cranial sensory neurogenesis and development of branchial arch-derived organs, then regulates the morphological and functional differentiation of the outer ear, middle ear and inner ear toward normal tissues. In addition, pathogenic mutations of SIX1 and SIX5 genes can also cause BOS/BORS. Variations of these genes mentioned above may cause disease by destroying the bindings between SIX1-EYA1, SIX5-EYA1 or SIX1-DNA. However, the role of SIX5 gene in the pathogenesis of BORS needs further verification.


Assuntos
Síndrome Brânquio-Otorrenal , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Deleção Cromossômica , Hibridização Genômica Comparativa , Pesquisa em Genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/metabolismo , Linhagem , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
12.
Carcinogenesis ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449106

RESUMO

Herein, we used DIANA TOOLS, GEPIA and other bioinformatics databases to predict regulatory pathways in breast cancer. Accordingly, we clarified the regulatory mechanism of EYA2 on miR-93 expression to aggravate breast cancer, which was involved with the STING signaling pathway. CCK-8 assay, scratch test, Transwell assay, and flow cytometry were applied to detect cell viability, migration, invasion, and apoptosis. The experimental data found that EYA2 was highly expressed in breast cancer tissues and cells and associated with poor prognosis. Overexpression of miR-93 in breast cancer was positively correlated with EYA2. EYA2 promoted miR-93 expression, advanced breast cancer cell proliferation and inhibited their apoptosis. Results of luciferase assay showed that miR-93 was enriched in the STING 3'UTR. Furthermore, knockdown of EYA2 inhibited the expression of miR-93, promoted the expression of STING, and inhibited the tumor growth. In response to EYA2 knockdown, the expression of IFN-ß and ISG was increased, and PD-L1 was decreased. In addition, the phosphorylation level of TBK1 and IRF3 was enhanced, the percentage of myeloid-derived suppressor cells in blood was reduced, and secretion of IFN-ß and IL-12 was enhanced. In conclusion, EYA2 upregulates miR-93 expression and promotes malignancy of breast cancer by targeting and inhibiting the STING signaling pathway.

13.
J Cell Mol Med ; 25(23): 10980-10989, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773364

RESUMO

Deubiquitinating enzyme OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1-derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.


Assuntos
Proliferação de Células/genética , Enzimas Desubiquitinantes/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Neoplasias da Glândula Tireoide/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Oncogenes/genética , Transdução de Sinais/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética
14.
J Cell Mol Med ; 25(8): 3735-3743, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710774

RESUMO

CircRNA-0068481 and several miRNAs are important in the pathogenesis of right ventricular hypertrophy (VH), while the inhibition of eye absent transcriptional coactivator and phosphatase 3 (EYA3) was proved to reverse vascular remodelling in rats. In this study, we tried to study the diagnostic value and mechanistic role of circRNA_0068481 in the diagnosis of RVH in PAH patients. qPCR was done to measure circRNA-0068481, miR-646, miR-750, miR-885 and EYA3 mRNA expression. Luciferase assay was done to explore the regulatory relationship between circRNA-0068481/EYA3 and the miRNAs. Western blot was done to measure EYA3 expression in AC16 cells. The expression of circRNA-0068481, miR-646 and miR-570 showed a considerable capability to diagnose RVH in PAH patients. The luciferase activity of circRNA-0068481 was remarkably suppressed by miR-646, miR-570 or miR-885. The luciferase signal of EYA3 was also inhibited by miR-646, miR-570 and miR-885. Up-regulation of circRNA-0068481 expression in AC16 significantly decreased miR-646, miR-570 and miR-885 expression, and up-regulated EYA3 expression, whereas circRNA-0068481 down-regulation significantly increased miR-646, miR-570 and miR-885 expression, and repressed EYA3 expression. CircRNA_0068481 sponged several miRNAs including miR-646, miR-570 and miR-885. These miRNAs were all found to target the expression of EYA3 mRNA, which is involved in the onset of right ventricular hypertrophy. Therefore, it can be concluded that the up-regulation of circRNA_0068481 can predict the diagnosis of right ventricular hypertrophy in pulmonary arterial hypertension patients.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Hipertrofia Ventricular Direita/patologia , MicroRNAs/genética , Proteínas Tirosina Fosfatases/metabolismo , RNA Circular/genética , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Tirosina Fosfatases/genética
15.
Dev Biol ; 467(1-2): 39-50, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891623

RESUMO

The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.


Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas de Ligação a RNA/biossíntese , Crânio/embriologia , Proteínas de Xenopus/biossíntese , Animais , Ectoderma/embriologia , Crista Neural/embriologia , Xenopus laevis
16.
Cell Tissue Res ; 383(3): 979-986, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33242174

RESUMO

Taste substances are detected by taste receptor cells in the taste buds in the oral epithelium. Individual taste receptor cells contribute to evoking one of the five taste qualities: sweet, umami, bitter, sour, and salty (sodium). They are continuously replaced every few weeks by new ones generated from local epithelial stem cells. A POU transcription factor, Pou2f3 (also known as Skn-1a), regulates the generation and differentiation of sweet, umami, and bitter cells. However, the molecular mechanisms underlying terminal differentiation into these Pou2f3-dependent taste receptor cells remain unknown. To identify the candidate molecules that regulate the differentiation of these taste receptor cells, we searched for taste receptor type-specific transcription factors using RNA-sequence data of sweet and bitter cells. No transcription factor gene showing higher expression in sweet cells than in bitter cells was found. Eyes absent 1 (Eya1) was identified as the only transcription factor gene showing higher expression in bitter cells than in sweet cells. In situ hybridization revealed that Eya1 was predominantly expressed in bitter cells and also in the putative immature/differentiating taste bud cells in circumvallate and fungiform papillae and soft palate. Eya1 is a candidate molecule that regulates the generation and differentiation of bitter cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Nucleares/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Papilas Gustativas , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Paladar , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo
17.
Clin Genet ; 100(3): 268-279, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988253

RESUMO

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de Goldenhar/genética , Cardiopatias Congênitas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Síndrome de Goldenhar/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Adulto Jovem
18.
Am J Med Genet A ; 185(1): 261-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098377

RESUMO

Branchio-oto-renal spectrum disorder (BORSD) is a rare autosomal dominant condition characterized by ear abnormalities with hard of hearing/deafness, second branchial arch malformations and renal anomalies. Pathogenic variations in EYA1 gene are found in the majority of clinically diagnosed individuals with BORSD. We describe an infant with BORSD related to a paternally inherited heterozygous pathogenic variation in EYA1 gene presenting with poor growth and hypoglycemia due to growth hormone deficiency. Magnetic resonance imaging revealed a diminutive pituitary gland and morphologically abnormal sella. Upon initiation of growth hormone therapy, the hypoglycemia resolved and catch up growth ensued. Pituitary abnormalities have not been reported previously in patients with BORSD. The zebrafish ortholog of eya1 is important for the development of adenohypophysis, suggesting that this patient's growth hormone deficiency and pituitary abnormality are part of BORSD. Inclusion of screening for pituitary hormone deficiency and pituitary imaging should be considered as a part of surveillance in patients with BORSD.


Assuntos
Síndrome Brânquio-Otorrenal/diagnóstico , Hormônio do Crescimento/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Síndrome Brânquio-Otorrenal/diagnóstico por imagem , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Feminino , Hormônio do Crescimento/deficiência , Humanos , Lactente , Hipófise/metabolismo , Hipófise/patologia , Adeno-Hipófise/diagnóstico por imagem , Adeno-Hipófise/metabolismo , Adeno-Hipófise/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-34089890

RESUMO

Evidence from mammals and aves alludes to a possibly conserved seasonal photoperiod induced neuroendocrine cascade which stimulates subsequent sexual maturation however our understanding of this mechanism in teleosts is lacking. Unlike all teleosts studied to date, the Atlantic cod (Gadus morhua) is a short day breeder with the reduction in day-length from the summer solstice stimulating gametogenesis. Cod specific orthologues of eya3, tshß and dio2 were identified and their expression was monitored in the brain and pituitary of cod held under either stimulated or inhibited photoperiod conditions. While no differential expression was apparent in brain dio2 & tshß and pituitary tshß, there was significant temporal variation in expression of pituitary eya3 under the SNP treatment, with expression level elevating in association with active gametogenesis. Under the LL treatment, sexual maturation was inhibited and there was a corresponding suppression of eya3 expression. In a second study the impact of size/energetic status on the initiation of sexual maturation was investigated. In the feed restricted population maturation was significantly suppressed (5% sexually mature) compared to the ab libitum fed stock (95% sexually mature) with there being a concomitant significant suppression in pituitary eya3 expression. Overall, these results suggest that pituitary eya3 has the potential to act as an integrator of both environmental and energetic regulation of sexual maturation of cod. Being the first account of eya3 induction in a short day breeding teleost, the conserved association with stimulation of reproduction and not seasonal state indicates that the upstream drivers which initiate the pathway differ among vertebrates according to their breeding strategies, but the pathway itself and its role in the reproductive cascade appears to be conserved across the vertebrate clade.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Gadus morhua/fisiologia , Sistemas Neurossecretores , Fotoperíodo , Maturidade Sexual , Animais , Ritmo Circadiano/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Filogenia , Hipófise/metabolismo , Reprodução/fisiologia , Estações do Ano , Fatores de Tempo , Vertebrados
20.
Ann Diagn Pathol ; 55: 151815, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34534789

RESUMO

This study aims to investigate the expression of SIX1, EYA2, and E-cadherin in ovarian cancer (OC). It was conducted on 97 cases of surface epithelial tumors (SEOTs). Immunohistochemistry (IHC) staining for the three markers was applied to archival paraffin-embedded sections. Results of semi-quantitative scoring were statistically compared, correlated with clinic-pathologic parameters, response to therapy and with patient survival. RESULTS: There was a significant association of SIX1 expression in the intratumoral stroma (ITS) with malignant cases (P < 0.0001). There was a significant direct correlation between tumour cell expression of SIX1 and EYA2 (P = 0.03) and an inverse correlation between SIX1 and E-cadherin (P = 0.03). Additionally, there were direct correlations between SIX1 expression and larger tumour size (P = 0.05), high mitosis (P < 0.0001), and advanced FIGO stage (P = 0.06), and between EYA2 expression and LN metastasis (P = 0.02), and low apoptotic index (P = 0.007). Only SIX1 expression in ITS affected the patient survival by univariate analysis (P = 0.004). CONCLUSIONS: SIX1/EYA2 complex may have a poor prognostic role in OC. SIX1 expression in ITS may be used as a predictive marker of stromal invasion in ovarian borderline tumors and could affect patients' survival in OC. SIX1, EYA2, and E-cadherin may constitute a pathway that could be targeted to stop the progression of SEOTs.


Assuntos
Caderinas , Carcinoma Epitelial do Ovário , Proteínas de Homeodomínio , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatases , Adulto , Idoso , Idoso de 80 Anos ou mais , Caderinas/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Transição Epitelial-Mesenquimal , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Proteínas Tirosina Fosfatases/metabolismo , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa