Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139209

RESUMO

The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.


Assuntos
Endocanabinoides , Neoplasias , Humanos , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/metabolismo , Queratinócitos/metabolismo
2.
J Enzyme Inhib Med Chem ; 36(1): 940-953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33896320

RESUMO

Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds.


Assuntos
Amidas/farmacologia , Amidoidrolases/antagonistas & inibidores , Analgésicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Flurbiprofeno/farmacologia , Amidas/síntese química , Amidas/química , Amidoidrolases/metabolismo , Analgésicos/síntese química , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flurbiprofeno/síntese química , Flurbiprofeno/química , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Eletricidade Estática , Relação Estrutura-Atividade
3.
Bioorg Chem ; 101: 104034, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599361

RESUMO

In experimental animals, inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents that act by inhibition of cyclooxygenase (COX). This suggests that compounds able to inhibit both enzymes may be potentially useful therapeutic agents. In the present study, we have investigated eight novel amide analogues of carprofen, ketoprofen and fenoprofen as potential FAAH/COX dual action inhibitors. Carpro-AM1 (2-(6-Chloro-9H-carbazol-2-yl)-N-(3-methylpyridin-2-yl)propenamide) and Carpro-AM6 (2-(6-Chloro-9H-carbazol-2-yl)-N-(3-chloropyridin-2-yl)propenamide) were found to be fully reversible inhibitors of the hydrolysis of 0.5 µM [3H]anandamide in rat brain homogenates with IC50 values of 94 and 23 nM, respectively, i.e. 2-3 orders of magnitude more potent than carprofen in this respect. Both compounds inhibited the cyclooxygenation of arachidonic acid by ovine COX-1, and were more potent inhibitors of human recombinant COX-2 when 2-arachidonoylglycerol was used as substrate than when arachidonic acid was used. It is concluded that Carpro-AM1 and Carpro-AM6 are dual-acting FAAH/substrate-selective COX inhibitors.


Assuntos
Amidoidrolases/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/uso terapêutico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Amidoidrolases/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Carbazóis/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Camundongos
4.
J Enzyme Inhib Med Chem ; 35(1): 815-823, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32200655

RESUMO

Inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. N-(3-Bromopyridin-2-yl)-2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [3H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a Ki value of 0.26 µM and an α value of 4.9. At a concentration of 10 µM, the compound did not inhibit the cyclooxygenation of arachidonic acid by either ovine COX-1 or human recombinant COX-2. However, this concentration of Ibu-AM68 greatly reduced the ability of the COX-2 to catalyse the cyclooxygenation of the endocannabinoid 2-arachidonoylglycerol. It is concluded that Ibu-AM68 is a dual-acting FAAH/substrate-selective COX inhibitor.


Assuntos
Amidas/farmacologia , Amidoidrolases/antagonistas & inibidores , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Ibuprofeno/farmacologia , Amidas/síntese química , Amidas/química , Amidoidrolases/metabolismo , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ibuprofeno/síntese química , Ibuprofeno/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade
5.
Mol Cell Biochem ; 453(1-2): 143-155, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30159798

RESUMO

The expression level of TRPV1 is high in hippocampus which is a main epileptic area in the brain. In addition to the actions of capsaicin (CAP) and reactive oxygen species (ROS), the TRPV1 channel is activated in neurons by endogenous cannabinoid, anandamide (AEA). In the current study, we investigated the role of inhibitors of TRPV1 (capsazepine, CPZ), AEA transport (AM404), and FAAH (URB597) on the modulation of Ca2+ entry, apoptosis, and oxidative stress in in vitro seizure-induced rat hippocampus and human glioblastoma (DBTRG) cell line. The seizure was induced in the hippocampal and DBTRG neurons using in vitro 4-aminopyridine (4-AP) to trigger a seizure-like activity model. CPZ and AM404 were fully effective in reversing 4-AP-induced intracellular free Ca2+ concentration of the hippocampus and TRPV1 current density of DBTRG. However, AEA and CAP did not activate TRPV1 in the URB597-treated neurons. Hence, we observed TRPV1 blocker effects of URB597 in the DBTRG neurons. In addition, the AM404 and CPZ treatments decreased intracellular ROS production, mitochondrial membrane depolarization, apoptosis, caspases 3 and 9 values in the hippocampus. In conclusion, the results indicate that inhibition of AEA transport, FAAH synthesis, and TRPV1 activity can result in remarkable neuroprotective effects in the epileptic neurons. Possible molecular pathways of involvement of capsazepine (CPZ) and AM4040 in anandamide and capsaicin (CAP)-induced apoptosis, oxidative stress, and Ca2+ accumulation through TRPV1 channel in the seizure-induced rat hippocampus and human glioblastoma neurons. The TRPV1 channel is activated by different stimuli including reactive oxygen species (ROS), anandamide (AEA), and CAP and it is blocked by capsazepine (CPZ). Cannabinoid receptor type 1 (CB1) is also activated by AEA. The AEA levels in cytosol are decreased by fatty acid amide hydrolase (FAAH) enzyme. Inhibition of FAAH through URB597 induces stimulation of CB1 receptor through accumulation AEA. URB597 acts antiepileptic effects through inhibition of TRPV1. Overloaded Ca2+ concentration of mitochondria can induce an apoptotic program by stimulating the release of apoptosis-promoting factors such as caspases 3 and caspase 9 by generating ROS due to respiratory chain damage. AM404 and CPZ reduce TRPV1 channel activation and Ca2+ entry in the in vitro 4-AP seizure model-induced hippocampal and glioblastoma neurons.


Assuntos
Amidoidrolases/biossíntese , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos , Endocanabinoides , Hipocampo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alcamidas Poli-Insaturadas , Convulsões/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/farmacocinética , Ácidos Araquidônicos/farmacologia , Sinalização do Cálcio , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endocanabinoides/farmacocinética , Endocanabinoides/farmacologia , Hipocampo/patologia , Humanos , Masculino , Alcamidas Poli-Insaturadas/farmacocinética , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Ratos Wistar , Convulsões/tratamento farmacológico , Convulsões/patologia , Canais de Cátion TRPV/metabolismo
6.
J Enzyme Inhib Med Chem ; 34(1): 562-576, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30688118

RESUMO

Fatty Acid Amide Hydrolase (FAAH) is a serine hydrolase that plays a key role in controlling endogenous levels of endocannabinoids. FAAH inhibition is considered a powerful approach to enhance the endocannabinoid signalling, and therefore it has been largely studied as a potential target for the treatment of neurological disorders such as anxiety or depression, or of inflammatory processes. We present two novel series of amide derivatives of ibuprofen designed as analogues of our reference FAAH inhibitor Ibu-AM5 to further explore its structure-activity relationships. In the new amides, the 2-methylpyridine moiety of Ibu-AM5 was substituted by benzylamino and piperazinoaryl moieties. The obtained benzylamides and piperazinoarylamides showed FAAH inhibition ranging from the low to high micromolar potency. The binding of the new amides in the active site of FAAH, estimated using the induced fit protocol, indicated arylpiperazinoamides binding the ACB channel and the cytosolic port, and benzylamides binding the ACB channel.


Assuntos
Amidas/farmacologia , Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ibuprofeno/farmacologia , Piperazina/farmacologia , Amidas/química , Amidoidrolases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ibuprofeno/síntese química , Ibuprofeno/química , Modelos Moleculares , Estrutura Molecular , Piperazina/química , Relação Estrutura-Atividade
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159524, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857757

RESUMO

Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1ß (IL-1ß), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.

8.
Biomed Pharmacother ; 165: 115194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499453

RESUMO

The endocannabinoid system is prominently implicated in the control of cocaine reinforcement due to its relevant role in synaptic plasticity and neurotransmitter modulation in the mesocorticolimbic system. The inhibition of fatty acid amide hydrolase (FAAH), and the resulting increase in anandamide and other N-acylethanolamines, represents a promising strategy for reducing drug seeking. In the present study, we aimed to assess the effects of the FAAH inhibitor URB597 (1 mg/kg) on crucial features of cocaine addictive-like behaviour in mice. Therefore, we tested the effects of URB597 on acquisition of cocaine (0.6 mg/kg/inf) self-administration, compulsive-like cocaine intake and cue-induced drug-seeking behaviour during withdrawal. URB597 reduced cocaine intake under conditioned punishment while having no impact on acquisition. This result was associated to increased cannabinoid receptor 1 gene expression in the ventral striatum and medium spiny neurons activation in the nucleus accumbens shell. Moreover, URB597 mitigated cue-induced drug-seeking behaviour during prolonged abstinence and prevented the withdrawal-induced increase in FAAH gene expression in the ventral striatum. In this case, URB597 decreased activation of medium spiny neurons in the nucleus accumbens core. Our findings evidence the prominent role of endocannabinoids in the development of cocaine addictive-like behaviours and support the potential of FAAH inhibition as a therapeutical target for the treatment of cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Amidoidrolases , Punição , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico
9.
Expert Opin Drug Discov ; 15(9): 1065-1080, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32425077

RESUMO

INTRODUCTION: Tobacco use disorder (TUD) is a chronic relapsing condition. Existing pharmacotherapy can assist smokers to initiate smoking cessation, but relapse rates remain high. Novel therapeutics are required to help people quit and also to prevent relapse. The endocannabinoid system has been increasingly implicated in reward and addiction processes and the cannabinoid CB1 receptor inverse agonist rimonabant has been shown to be effective at promoting smoking cessation but has been associated with adverse psychiatric side effects. AREAS COVERED: Multiple converging factors likely contribute to the maintenance of smoking and cause relapse including nicotine reinforcement, propensity to reinstate drug seeking (induced by nicotine priming, nicotine-associated cues, and stress), the severity of withdrawal signs and executive function status. Studies assessing the impact of endocannabinoid (CB1 receptor, CB2 receptor, anandamide, and 2-arachidonoylglycerol) modulation on these addiction-related factors are reviewed. Future research avenues are also discussed. EXPERT OPINION: Endocannabinoid research in TUD is at a relatively early stage. Based on current evidence, CB1 receptor neutral antagonists and fatty acid amide hydrolase inhibitors demonstrate positive effects in studies assessing several addiction-related factors. This suggests they offer the greatest promise as novel cessation and anti-relapse agents.


Assuntos
Desenvolvimento de Medicamentos , Endocanabinoides/metabolismo , Tabagismo/tratamento farmacológico , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Humanos , Abandono do Hábito de Fumar/métodos , Tabagismo/fisiopatologia
10.
Neuropharmacology ; 155: 142-149, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145905

RESUMO

Here we investigate the involvement of the ventral pallidum (VP) in the anti-nausea effect of fatty acid amide hydrolase (FAAH) inhibition with PF-3845, and examine the pharmacological mechanism of such an effect. We explored the potential of intra-VP PF-3845 to reduce the establishment of lithium chloride (LiCl)-induced conditioned gaping (a model of acute nausea) in male Sprague-Dawley rats. As well, the role of the cannabinoid 1 (CB1) receptors and the peroxisome proliferator-activated receptors-α (PPARα) in the anti-nausea effect of PF-3845 was examined. Finally, the potential of intra-VP GW7647, a PPARα agonist, to reduce acute nausea was also evaluated. Intra-VP PF-3845 dose-dependently reduced acute nausea by a PPARα mechanism (and not a CB1 receptor mechanism). Intra-VP administration of GW7647, similarly attenuated acute nausea. These findings suggest that the anti-nausea action of FAAH inhibition may occur in the VP, and may involve activation of PPARα to suppress acute nausea.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/enzimologia , Náusea/tratamento farmacológico , Náusea/enzimologia , Animais , Butiratos/administração & dosagem , Infusões Intraventriculares , Cloreto de Lítio/toxicidade , Masculino , Náusea/induzido quimicamente , Compostos de Fenilureia/administração & dosagem , Piperidinas/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
11.
Neuropharmacology ; 101: 146-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26363193

RESUMO

In the present study, we investigated the effects of acute pharmacological manipulation of the endocannabinoid (EC) system on the valence of cognitive judgement bias of rats in the ambiguous-cue interpretation (ACI) paradigm. To accomplish this goal, after initial behavioural training, different groups of rats received single, systemic injections of the irreversible anandamide (AEA) hydrolysis inhibitor URB597, the cannabinoid receptor type 1 (CB1) inverse agonist AM251, the cannabinoid receptor type 2 (CB2) inverse agonist AM630, the combination of URB597 and AM251, and a combination of URB597 and AM630 and were subsequently tested with the ACI paradigm. We report that URB597 at a dose of 1 mg/kg significantly biased animals towards positive interpretation of the ambiguous cue and that this effect was abolished by pre-treatment with AM251 (1 mg/kg) or AM630 (1 mg/kg). The CB1 and CB2 inverse agonists administered alone (1 mg/kg) had no statistically significant effects on the interpretation of the ambiguous cue by rats. Our findings suggest involvement of the endocannabinoid system in the mediation of optimistic judgement bias.


Assuntos
Ácidos Araquidônicos/farmacologia , Viés , Bloqueadores dos Canais de Cálcio/farmacologia , Cognição/efeitos dos fármacos , Endocanabinoides/farmacologia , Julgamento/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Estimulação Acústica , Análise de Variância , Animais , Benzamidas/farmacologia , Carbamatos/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Discriminação Psicológica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Endocanabinoides/metabolismo , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos
12.
Psychopharmacology (Berl) ; 233(10): 1879-88, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26558620

RESUMO

RATIONALE: Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. OBJECTIVES: We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). METHODS: A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0 to 28 s. Various test drugs were given acutely up to two times per week before daily sessions. RESULTS: One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). CONCLUSIONS: FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Masculino , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo
13.
Neuropharmacology ; 85: 427-39, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24937045

RESUMO

Traumatic brain injury (TBI) is the leading cause of death in young adults in the United States, but there is still no effective agent for treatment. N-arachidonoylethanolamine (anandamide, AEA) is a major endocannabinoid in the brain. Its increase after brain injury is believed to be protective. However, the compensatory role of AEA is transient due to its rapid hydrolysis by the fatty acid amide hydrolase (FAAH). Thus, inhibition of FAAH can boost the endogenous levels of AEA and prolong its protective effect. Using a TBI mouse model, we found that post-injury chronic treatment with PF3845, a selective and potent FAAH inhibitor, reversed TBI-induced impairments in fine motor movement, hippocampus dependent working memory and anxiety-like behavior. Treatment with PF3845 inactivated FAAH activity and enhanced the AEA levels in the brain. It reduced neurodegeneration in the dentate gyrus, and up-regulated the expression of Bcl-2 and Hsp70/72 in both cortex and hippocampus. PF3845 also suppressed the increased production of amyloid precursor protein, prevented dendritic loss and restored the levels of synaptophysin in the ipsilateral dentate gyrus. Furthermore, PF3845 suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 post-TBI, suggesting a shift of microglia/macrophages from M1 to M2 phenotype. The effects of PF3845 on TBI-induced behavioral deficits and neurodegeneration were mediated by activation of cannabinoid type 1 and 2 receptors and might be attributable to the phosphorylation of ERK1/2 and AKT. These results suggest that selective inhibition of FAAH is likely to be beneficial for TBI treatment.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Ansiedade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/psicologia , Caspase 3/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuroimunomodulação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Recuperação de Função Fisiológica/fisiologia
14.
Biochem Pharmacol ; 92(4): 669-89, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25283614

RESUMO

Besides the suggested role of a putative endocannabinoid membrane transporter mediating the cellular uptake of the endocannabinoid anandamide (AEA), this process is intrinsically coupled to AEA degradation by the fatty acid amide hydrolase (FAAH). Differential blockage of each mechanism is possible using specific small-molecule inhibitors. Starting from the natural product-derived 2E,4E-dodecadiene scaffold previously shown to interact with the endocannabinoid system (ECS), a series of diverse N-alkylcarbamates were prepared with the aim of generating novel ECS modulators. While being inactive at cannabinoid receptors and monoacylglycerol lipase, these N-alkylcarbamates showed potent to ultrapotent picomolar FAAH inhibition in U937 cells. Overall, a highly significant correlation (Spearman's rho=0.91) was found between the inhibition of FAAH and AEA cellular uptake among 54 compounds. Accordingly, in HMC-1 cells lacking FAAH expression the effect on AEA cellular uptake was dramatically reduced. Unexpectedly, 3-(4,5-dihydrothiazol-2-yl)phenyl carbamates and the 3-(1,2,3-thiadiazol-4-yl)phenyl carbamates WOBE490, WOBE491 and WOBE492 showed a potentiation of cellular AEA uptake inhibition in U937 cells, resulting in unprecedented femtomolar (hyperpotent) IC50 values. Potential methodological issues and the role of cellular accumulation of selected probes were investigated. It is shown that albumin impacts the potency of specific N-alkylcarbamates and, more importantly, that accumulation of FAAH inhibitors can significantly increase their effect on cellular AEA uptake. Taken together, this series of N-alkylcarbamates shows a FAAH-dependent inhibition of cellular AEA uptake, which can be strongly potentiated using specific head group modifications. These findings provide a rational basis for the development of hyperpotent AEA uptake inhibitors mediated by ultrapotent FAAH inhibition.


Assuntos
Amidoidrolases/farmacocinética , Ácidos Araquidônicos/farmacocinética , Carbamatos/farmacologia , Endocanabinoides/farmacocinética , Alcamidas Poli-Insaturadas/farmacocinética , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa