Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Neurol ; 24(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166857

RESUMO

BACKGROUND: Combined oxidative phosphorylation deficiency (COXPD) is a severe disorder with early onset and autosomal recessive inheritance, and has been divided into 51 types (COXPD1-COXPD51). COXPD14 is caused by a mutation in the FARS2 gene, which encodes mitochondrial phenylalanyl-tRNA synthetase (mt-PheRS), an enzyme that transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, an increasing number of FARS2 variations have been subsequently identified, which present three main phenotypic manifestations: early onset epileptic encephalopathy, hereditary spastic paraplegia, and juvenile-onset epilepsy. To our knowledge, no adult cases have been reported in the literature. METHODS: We report in detail a case of genetically confirmed COXPD14 and review the relevant literature. RESULTS: Approximately 58 subjects with disease-causing variants of FARS2 have been reported, including 31 cases of early onset epileptic encephalopathy, 16 cases of hereditary spastic paraplegia, 3 cases of juvenile-onset epilepsy, and 8 cases of unknown phenotype. We report a case of autosomal recessive COXPD14 in an adult with status epilepticus as the only manifestation with a good prognosis, which is different from that in neonatal or infant patients reported in the literature. c.467C > T (p.T156M) has been previously reported, while c.119_120del (p.E40Vfs*87) is novel, and, both mutations are pathogenic. CONCLUSIONS: This case of autosomal recessive COXPD14 in an adult only presented as status epilepticus, which is different from the patients reported previously. Our study expands the mutation spectrum of FARS2, and we tended to define the phenotypes based on the clinical manifestation rather than the age of onset.


Assuntos
Epilepsia , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Paraplegia Espástica Hereditária , Estado Epiléptico , Lactente , Adulto , Recém-Nascido , Humanos , Paraplegia Espástica Hereditária/genética , Epilepsia/genética , Doenças Mitocondriais/genética , Mutação/genética , Fenótipo , Fenilalanina-tRNA Ligase/genética , Proteínas Mitocondriais/genética
2.
Mol Genet Metab ; 140(3): 107657, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37523899

RESUMO

FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.


Assuntos
Epilepsia , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Humanos , Lactente , Recém-Nascido , Epilepsia/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/química , RNA de Transferência/genética , RNA de Transferência de Fenilalanina/metabolismo
3.
Int J Neurosci ; 129(11): 1094-1097, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31329004

RESUMO

FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase and is implicated in autosomal recessive combined oxidative phosphorylation deficiency 14. The clinical manifestation can be divided into early onset epileptic phenotype and spastic paraplegia phenotype. The purpose of this study was to report a case of juvenile manifesting refractory epilepsy caused by two novel compound heterozygous mutations in the FARS2 gene. Microscopic and histochemical examination as well as next-generation sequencing and reconstruction of the three-dimensional structure of FARS2 protein were performed. A 17-year-old man with no developmental delays suffered from generalized tonic-clonic convulsion since 12 years of age and developed refractory status epilepticus 5 years later. No specific etiology was found following brain imaging, muscle biopsy and metabolic studies. DNA sequencing identified two novel compound heterozygous mutations in FARS2, (p.V197M and p.F402S), derived from each parents, respectively. These mutations affected the structure or thermodynamic stability of the protein. This is a case report of juvenile-onset refractory epilepsy caused by two novel compound heterozygous mutations in the FARS2 gene. This case confirms and expands the clinicalphenotype and the genotypic spectrum of the FARS2 gene.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Epilepsia Tônico-Clônica/genética , Proteínas Mitocondriais/genética , Fenilalanina-tRNA Ligase/genética , Estado Epiléptico/genética , Adolescente , Idade de Início , Humanos , Masculino , Mutação
4.
Mol Genet Metab ; 125(3): 281-291, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30177229

RESUMO

An increasing number of mitochondrial diseases are found to be caused by pathogenic variants in nuclear encoded mitochondrial aminoacyl-tRNA synthetases. FARS2 encodes mitochondrial phenylalanyl-tRNA synthetase (mtPheRS) which transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, a total of 21 subjects with FARS2 deficiency have been reported to date with a spectrum of disease severity that falls between two phenotypes; early onset epileptic encephalopathy and a less severe phenotype characterized by spastic paraplegia. In this report, we present an additional 15 individuals from 12 families who are mostly Arabs homozygous for the pathogenic variant Y144C, which is associated with the more severe early onset phenotype. The total number of unique pathogenic FARS2 variants known to date is 21 including three different partial gene deletions reported in four individuals. Except for the large deletions, all variants but two (one in-frame deletion of one amino acid and one splice-site variant) are missense. All large deletions and the single splice-site variant are in trans with a missense variant. This suggests that complete loss of function may be incompatible with life. In this report, we also review structural, functional, and evolutionary significance of select FARS2 pathogenic variants reported here.


Assuntos
Aminoacil-tRNA Sintetases/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fenilalanina-tRNA Ligase/genética , Adolescente , Adulto , Aminoacil-tRNA Sintetases/deficiência , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Mutação/genética , Paraplegia/genética , Paraplegia/patologia , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/deficiência , Isoformas de Proteínas/genética , Relação Estrutura-Atividade , Adulto Jovem
5.
Mol Genet Metab ; 122(4): 172-181, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29126765

RESUMO

Mutations in FARS2 are known to cause dysfunction of mitochondrial translation due to deficient aminoacylation of the mitochondrial phenylalanine tRNA. Here, we report three novel mutations in FARS2 found in two patients in a compound heterozygous state. The missense mutation c.1082C>T (p.Pro361Leu) was detected in both patients. The mutations c.461C>T (p.Ala154Val) and c.521_523delTGG (p.Val174del) were each detected in one patient. We report abnormal in vitro aminoacylation assays as a functional validation of the molecular genetic findings. Based on the phenotypic data of previously reported subjects and the two subjects reported here, we conclude that FARS2 deficiency can be associated with two phenotypes: (i) an epileptic phenotype, and (ii) a spastic paraplegia phenotype.


Assuntos
Epilepsia/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Fenótipo , Fenilalanina-tRNA Ligase/deficiência , Fenilalanina-tRNA Ligase/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Encéfalo/diagnóstico por imagem , Células Cultivadas , Exoma , Feminino , Fibroblastos/metabolismo , Heterozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Mutação de Sentido Incorreto/genética , Consumo de Oxigênio , RNA de Transferência/metabolismo , Análise de Sequência de DNA
6.
Hum Mutat ; 37(2): 165-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26553276

RESUMO

Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by spasticity of the lower limbs due to pyramidal tract dysfunction. Here, we report that a missense homozygous mutation c.424G>T (p.D142Y) in the FARS2 gene, which encodes a mitochondrial phenylalanyl tRNA synthetase (mtPheRS), causes HSP in a Chinese consanguineous family by using combination of homozygous mapping and whole-exome sequencing. Immunohistochemical experiments were performed showing that the FARS2 protein was highly expressed in the Purkinje cells of rat cerebellum. The aminoacylation activity of mtPheRS was severely disrupted by the p.D142Y substitution in vitro not only in the first aminoacylation step but also in the last transfer step. Taken together, our results indicate that a missense mutation in FARS2 contributes to HSP, which has the clinical significance of the regulation of tRNA synthetases in human neurodegenerative diseases.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Fenilalanina-tRNA Ligase/genética , Paraplegia Espástica Hereditária/genética , Animais , Sequência de Bases , Consanguinidade , Análise Mutacional de DNA , Exoma , Feminino , Expressão Gênica , Homozigoto , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dados de Sequência Molecular , Linhagem , Fenilalanina-tRNA Ligase/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos , Alinhamento de Sequência , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/patologia
7.
Am J Med Genet A ; 170(11): 3004-3007, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27549011

RESUMO

The FARS2 gene encodes the mitochondrial phenylalanyl-tRNA synthetase and is implicated in autosomal recessive combined oxidative phosphorylation deficiency 14, a clinical condition characterized by infantile onset epilepsy and encephalopathy. Mutations in FARS2 have been reported in only few patients, but a detailed description of seizures, electroencephalographic patterns, magnetic resonance imaging findings, and long-term follow-up is still needed. We provide a clinical report of a child with FARS2-related disease manifesting drug-resistant infantile spasms associated with focal seizures. By comparative genomic hybridization analysis we identified a heterozygous microdeletion in the short arm of chromosome 6, inherited from the mother, that encompasses the first coding exon of FARS2. By sequencing of the FARS2 gene we identified a variant c.1156C>G; p.(R386G), inherited from the father. By using standard spectrophotometric techniques in skin fibroblasts, we found a combined abnormality of complexes I and IV of the mitochondrial respiratory chain. The main clinical features of the patient included axial hypotonia, mild distal hypertonia, and psychomotor delay. The magnetic resonance imaging showed microcephaly, frontal cerebral atrophy, and signal changes of dentate nuclei. At the age of 3 years and 6 months, the patient was still under treatment with vigabatrin and he has been seizure free for the last 23 months. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Mitocondriais/genética , Mutação , Fenilalanina-tRNA Ligase/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Anticonvulsivantes/uso terapêutico , Encéfalo/patologia , Deleção Cromossômica , Cromossomos Humanos Par 6 , Hibridização Genômica Comparativa , Eletroencefalografia , Éxons , Heterozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Espasmos Infantis/tratamento farmacológico , Resultado do Tratamento
8.
Am J Med Genet A ; 167A(5): 1147-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25851414

RESUMO

Recently, mutations in FARS2, which encodes for mitochondrial phenylalanyl-tRNA synthetase, have been implicated in autosomal recessive combined oxidative phosphorylation deficiency 14. Associated clinical features in three previously reported patients with confirmed FARS2 mutations include infantile onset epilepsy, and a fatal Alpers-like encephalopathy. Herein, we report on two siblings with global developmental delay, dysarthria and tremor and compound heterozygous FARS2 abnormalities. They have a heterozygous missense mutation, c.1255C>T which predicts p.Arg419Cys in exon 7 of FARS2, inherited from their father and uncovered on exome sequencing, and an interstitial deletion of chromosome 6p25.1 inherited from their mother and uncovered on SNP array. This interstitial deletion includes all of exon 6 and parts of introns 5 and 6 of FARS2. Biochemical studies were also consistent with a mitochondrial disorder. While these siblings had considerable developmental difficulties, they are making consistent developmental progress and appear to be considerably less severely affected than the other patients reported in the literature with FARS2 associated mitochondrial disease. Thus, this study expands the phenotypic spectrum of FARS2 related disease and emphasizes intragenic deletion in the list of causative mutations.


Assuntos
Lobo Frontal/fisiopatologia , Mitocôndrias/genética , Doenças Mitocondriais/genética , Fenilalanina-tRNA Ligase/genética , Adolescente , Criança , Pré-Escolar , Exoma/genética , Éxons/genética , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/fisiopatologia , Mutação de Sentido Incorreto , Linhagem , Radiografia , Irmãos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia
9.
Front Genet ; 14: 1130687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152989

RESUMO

Defects in FARS2 are associated with either epileptic phenotypes or a spastic paraplegia subtype known as SPG77. Here, we describe an 8-year-old patient with severe and complicated spastic paraplegia, carrying a missense variant (p.Pro361Leu) and a novel intragenic deletion in FARS2. Of note, the disease is unexpectedly progressing rapidly and in a biphasic way differently from the previously reported cases. Our study provides the first detailed molecular characterization of a FARS2 deletion and its underlying molecular mechanism, and demonstrates the need for combining different tools to improve the diagnostic rate.

10.
Eur J Med Res ; 27(1): 184, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36155627

RESUMO

BACKGROUND: As a rare mitochondrial disease, combined oxidative phosphorylation deficiency 14 (COXPD14) is caused by biallelic variants in the phenylalanyl-tRNA synthetase 2, mitochondrial gene (FARS2) with clinical features of developmental delay, an elevated lactate level, early-onset encephalopathy, liver failure, and hypotonia. The objectives of this study were to analyze the clinical and molecular features of two Chinese siblings affected with COXPD14, and to review relevant literature. METHODS: Mutation screening was performed by whole exome sequencing (WES) in combination with Sanger sequencing validation to identify the disease-causing variants of the two patients. RESULTS: The two siblings presented with severe clinical features and both progressed aggressively and failed to survive after treatment abandonment. We identified two compound heterozygous FARS2 variants c.925G>A p.Gly309Ser and c.943G>C p.Gly315Arg in this proband, which were inherited from the unaffected father and mother, respectively. In addition, Sanger sequencing confirmed that the elder affected sister carried the same compound heterozygous variants. The c.925G>A p.Gly309Ser variant is known and commonly reported in COXPD14 patients, while c.943G>C p.Gly315Arg is a novel one. Neither of the variants was found in 100 Chinese healthy controls. Both variants were classified as "deleterious" and were located in the highly conserved regions of the protein. The above results suggested that the two variants were likely causative in this COXPD14-affected pedigree. CONCLUSIONS: Our study expands the mutation spectrum of FARS2 and highlights the importance of genetic testing in the diagnosis of diseases with a wide variety of phenotypes, especially in the differential diagnosis of diseases.


Assuntos
Doenças Mitocondriais , Fenilalanina-tRNA Ligase , China , Humanos , Lactatos , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação/genética , Linhagem , Fenilalanina-tRNA Ligase/genética , Irmãos
11.
Front Cardiovasc Med ; 8: 724846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540921

RESUMO

Background: Mitochondrial aminoacyl-tRNA synthetases (mtARSs) catalyze the binding of specific amino acids to their cognate tRNAs and play an essential role in the synthesis of proteins encoded by mitochondrial DNA. Defects in mtARSs have been linked to human diseases, but their tissue-specific pathophysiology remains elusive. Here we examined the role of mitochondrial phenylalanyl-tRNA synthetase (FARS2) in developmental angiogenesis and its potential contribution to the pathogenesis of cardiovascular disease. Methods: Morpholinos were injected into fertilized zebrafish ova to establish an in vivo fars2 knock-down model. A visualization of the vasculature was achieved by using Tg (fli1: EGFP) y1 transgenic zebrafish. In addition, small interference RNAs (siRNAs) were transferred into human umbilical vein endothelial cells (HUVECs) to establish an in vitro FARS2 knock-down model. Cell motility, proliferation, and tubulogenesis were determined using scratch-wound CCK8, transwell-based migration, and tube formation assays. In addition, mitochondria- and non-mitochondria-related respiration were evaluated using a Seahorse XF24 analyzer and flow cytometry assays. Analyses of the expression levels of transcripts and proteins were performed using qRT-PCR and western blotting, respectively. Results: The knock-down of fars2 hampered the embryonic development in zebrafish and delayed the formation of the vasculature in Tg (fli1: EGFP) y1 transgenic zebrafish. In addition, the siRNA-mediated knock-down of FARS2 impaired angiogenesis in HUVECs as indicated by decreased cell motility and tube formation capacity. The knock-down of FARS2 also produced variable decreases in mitochondrial- and non-mitochondrial respiration in HUVECs and disrupted the regulatory pathways of angiogenesis in both HUVECs and zebrafish. Conclusion: Our current work offers novel insights into angiogenesis defects and cardiovascular diseases induced by FARS2 deficiency.

12.
J Pediatr Neurosci ; 16(4): 323-326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36531778

RESUMO

Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare devastating infantile epileptic encephalopathy that is characterized by a unique electroencephalopgraphy (EEG) signature of multifocal simultaneous seizures. Although no definite etiology is understood for EIMFS, mutations in certain ion channels, are implicated. Similarly, phenylalanyl-tRNA synthetase 2 (FARS2) deficiency is a rare, autosomal recessive disorder of dysfunctional mitochondrial translation causing refractory seizures, lactic acidosis, and developmental regression with a variety of EEG findings. However, an EIMFS-like pattern on EEG in FARS2 deficiency has only recently been reported once. Herein, we describe a seven-week-old male with seizures where whole exome sequencing (WES) revealed pathogenic FARS2 variants and an EIMFS pattern on EEG. This case provides an insight on a novel genetic mechanism for EIMFS. We encourage early consideration of WES when EIMFS is detected to evaluate for FARS2 deficiency, especially in the setting of profound lactic acidosis.

13.
Mol Genet Metab Rep ; 27: 100756, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33875935

RESUMO

The novel SARS-CoV-2 has infected over 48 million persons around the world. Children have been spared with regards to symptoms and sequelae of this highly infectious virus and in those with neurologic issues, the virus has not been present in the cerebrospinal fluid. Here, the authors present the first case of metabolic stroke-like episode with SARS-CoV-2 present in the cerebrospinal fluid in a child with a FARS2 deficiency. This report suggests a possible association of SARS-COV-2 infection and metabolic stroke-like episode, even in the absence of a phenotype classically associated with metabolic stroke-like episodes.

14.
Epileptic Disord ; 22(3): 327-335, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597768

RESUMO

Epilepsy of infancy with migrating focal seizures (EIMFS) is now a well-recognized early-onset syndrome included in the ILAE classification of the epilepsies. KCNT1 gain-of-function variants are identified in about half of patients. In the remaining cases, the underlying genetic component is far more heterogeneous with sporadic mutations occasionally reported in SCN1A, SCN2A, SLC12A5, TBC1D24, PLCB1, SLC25A22, and KCNQ2. Here, we report, for the first time, a homozygous deleterious variant in the FARS2 gene, identified using a 115-gene panel for monogenic epilepsies, in a patient with EIMFS. This boy was the second child born to healthy consanguineous parents. The first seizures occurred at six weeks of age. The patient rapidly developed severe epilepsy with focal discharges on EEG, migrating from one brain region to another, highly suggestive of EIMFS. At five months of age, he had daily multifocal clonic seizures and erratic myoclonic fits, which were not consistently related to spikes or spike-and-wave discharges. Neurological status was severely abnormal from onset and the patient died at 10 months of age from respiratory distress. Using the gene panel, a homozygous missense variant of FARS2 was identified, at Chr6 (GRCh37):g.5404829C>T, c.667C>T (NM_001318872.1), inherited from both parents, leading to an arginine-to-cysteine substitution, p.(Arg223Cys). FARS2 is a member of the mitochondrial aminoacyl tRNA transferase (ARS) enzymes. ARS variants are increasingly recognized causes of early-onset epileptic and neurodevelopmental encephalopathies, however, the associated epileptic phenotype is not completely described. This case shows that FARS2-related seizures can mimic EIMFS in the early stage of the disease. Furthermore, in the setting of migrating focal seizures of infancy, FARS2 should be considered as a further candidate gene, and increased lactate level and occurrence of refractory myoclonic seizures are possible key features to suspect FARS deficiency.


Assuntos
Proteínas Mitocondriais/genética , Fenilalanina-tRNA Ligase/genética , Convulsões/genética , Convulsões/fisiopatologia , Idade de Início , Códon sem Sentido , Consanguinidade , Evolução Fatal , Humanos , Lactente , Masculino
15.
Front Genet ; 11: 787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774346

RESUMO

FARS2, a nuclear gene, encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS). Previous reports have described two distinct phenotypes linked to FARS2 gene mutation: an early onset epileptic encephalopathy and spastic paraplegia. This report describes a distinctive phenotype of FARS2-linked, juvenile onset refractory epilepsy, caused by a hemizygous mutation in a compound heterozygous state (p.V197M and exon 2 microdeletion). A 17-year- old woman with normal development presented with a super refractory focal motor status epilepticus. Only an emergency life-saving surgery aborted her status after all therapeutic interventions, including anesthesia, failed to control her seizures. Pathological and biochemical activities on muscle biopsy showed mitochondrial proliferation with enhanced isolated activities of complexes II and IV, suggestive of a compensatory mechanism for the bioenergetic deficiency. Postoperatively, the patient started experiencing focal aware motor seizures originating from the contralateral hemisphere after being seizure free for a few months. This report suggests a third phenotypic manifestation of FARS2 gene mutation.

16.
J Child Neurol ; 34(10): 621, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106652

RESUMO

Herein we present two siblings with hereditary spastic paraplegia caused by novel compound heterozygous variant and deletion in FARS2 and expansion of the disease spectrum to include dysphonia.


Assuntos
Disfonia/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Fenilalanina-tRNA Ligase/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Criança , Progressão da Doença , Feminino , Heterozigoto , Humanos , Masculino , Fenótipo , Irmãos
17.
Epilepsy Res ; 129: 118-124, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043061

RESUMO

Early-onset epileptic encephalopathy (EOEE) consists of a heterogeneous group of epilepsy phenotypes. Recent technological advances in molecular biology have also rapidly expanded the genotype of EOEE. Genes involved in diverse molecular pathways, including ion channels, synaptic structure, transcription regulation, and cellular growth, have been implicated in EOEE. Mitochondrial aminoacyl tRNA synthetase, which plays a key role in mitochondrial protein synthesis by attaching 20 different amino acids to the tRNA tail, has been recently linked with the epilepsy phenotype. Here, we report a novel homozygous c.925G>A (G309S) missense mutation in the gene that encodes the human mitochondrial phenylalanyl-tRNA synthetase (FARS2) in four patients from two nonconsanguineous Korean families. All four patients suffered from intractable seizures that started at the age of 3 and 4 months. Seizure types were variable, including infantile spasms and myoclonic seizures, and often prolonged. Although their initial development seemed to be normal, relentless regression after seizure onset occurred in all patients. An etiologic investigation, including brain imaging and metabolic studies, did not reveal a specific etiology. We reviewed the epilepsy phenotypes of six additional FARS2 mutation-positive patients and suggest that FARS2 can be considered one of the genetic causes of EOEE.


Assuntos
Epilepsia/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Fenilalanina-tRNA Ligase/genética , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Lactente , Masculino , Proteínas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Fenótipo , Fenilalanina-tRNA Ligase/metabolismo
18.
J Child Neurol ; 31(9): 1127-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27095821

RESUMO

Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Epilepsias Mioclônicas/genética , Heterozigoto , Proteínas Mitocondriais/genética , Mutação , Fenilalanina-tRNA Ligase/genética , Adolescente , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/patologia , Epilepsias Mioclônicas/fisiopatologia , Evolução Fatal , Feminino , Humanos , Fenótipo
20.
Mol Genet Metab Rep ; 14: 41-42, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29326872
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa