Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Renew Energy ; 164: 433-443, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32963424

RESUMO

Biodiesel production using supercritical methanolysis has received immense interest over the last few years. It has the ability to convert high acid value feedstock into biodiesel using a single-pot reaction. However, the energy intensive process is the main disadvantage of supercritical biodiesel process. Herein, a conceptual design for the integration of supercritical biodiesel process with organic Rankine cycle (ORC) is presented to recover residual hot streams and to generate electric power. This article provides energy and techno-economic comparative study for three developed scenarios as follows: original process with no energy integration (Scenario 1), energy integrated process (Scenario 2) and advanced energy integrated process with ORC (Scenario 3). The developed integrated biodiesel process with ORC resulted in electric power generation that has not only satisfied the process electric requirement but also provided excess power of 257 kW for 8,000 tonnes/annum biodiesel plant. The techno-economic comparative analysis resulted in favouring the third scenario with 36% increase in the process profitability than the second scenario. Sensitivity analysis has shown that biodiesel price variation has significant effect on the process profitability. In summary, integrating supercritical biodiesel production process with ORC appears to be a promising approach for enhancing the process techno-economic profitability and viability.

2.
Fuel (Lond) ; 278: 118255, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32834073

RESUMO

Nowadays, production of biofuels is a rather hot topic due to depleting of conventional fossil fuel feedstocks and a number of other factors. Plant lipid-based feedstocks are very important for production of diesel-, kerosene-, and gasoline-like hydrocarbons. Usually, (hydro)deoxygenation processes are aimed at obtaining of linear hydrocarbons known to have poor fuel characteristics compared to the branched ones. Thus, further hydroisomerization is required to improve their properties as motor fuel components. This review article is focused on conversion of lipid-based feedstocks and model compounds into high-quality fuel components for a single step - direct cracking into aromatics and merged hydrodeoxygenation-hydroisomerization to obtain isoparaffins. The second process is quite novel and a number of the research articles presented in the literature is relatively low. As auxiliary subsections, hydroisomerization of straight hydrocarbons and techno-economic analysis of renewable diesel-like fuel production are briefly reviewed as well.

3.
S Afr J Bot ; 135: 240-251, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32963416

RESUMO

Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.

4.
Food Hydrocoll ; 83: 253-264, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30283194

RESUMO

Depletion flocculation is a well-known instability mechanism that can occur in oil-in-water emulsions when the concentration of non-adsorbed polysaccharide exceeds a certain level. This critical flocculation concentration depends on the molecular characteristics of the polysaccharide molecules, such as their molecular weight and hydrodynamic radius. In this study, a range of analytical methods (dynamic shear rheology, optical microscopy, and static light-scattering) were used to investigate the interaction between lipid droplets and polysaccharides (guar gum and ß-glucans) of varying weight-average molecular weight and hydrodynamic radius, and concentration. The aim of this work was to see if the health benefits of soluble fibers like ß-glucans could be explained by their influence on the structure and digestibility of lipid emulsions. The apparent viscosity of the emulsions increased with increasing polysaccharide concentration, molecular weight, and hydrodynamic radius. Droplet flocculation was observed in the emulsions only at certain polysaccharide concentrations, which was attributed to a depletion effect. In addition, the water-soluble components in oat flakes, flour, and bran were extracted using aqueous solutions, to examine their impact on emulsion stability and properties. Then, the rate and extent of lipolysis of a sunflower oil-in-water emulsion in the presence of these oat extracts were monitored using the pH-stat method. However, the inhibition of lipolysis was not linearly related to the viscosity of the oat solutions. The water-soluble extracts of ß-glucan collected from oat flakes had a significant inhibitory effect on lipolysis. The results of this study increase our understanding of the possible mechanisms influencing the impact of oat constituents on lipid digestion. This work also highlights the importance of considering the molecular properties of polysaccharides, and not just their impact on solution viscosity.

5.
Br J Nutr ; 116(5): 788-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27424661

RESUMO

Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Lipídeos/sangue , Lipídeos/química , Adulto , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Adulto Jovem
6.
J Clin Transl Endocrinol ; 27: 100283, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024343

RESUMO

Cystic fibrosis-liver disease (CFLD) is one of the most common non-pulmonary complications in the CF population, is associated with significant morbidity and represents the third leading cause of mortality in those with CF. CFLD encompasses a broad spectrum of hepatobiliary manifestations ranging from mild transaminitis, biliary disease, hepatic steatosis, focal biliary cirrhosis and multilobular biliary cirrhosis. The diagnosis of CFLD and prediction of disease progression remains a clinical challenge. The identification of novel CFLD biomarkers as well as the role of newer imaging techniques such as elastography to allow for early detection and intervention are active areas of research focus. Biliary cirrhosis with portal hypertension represents the most severe spectrum of CFLD, almost exclusively develops in the pediatric population, and is associated with a decline in pulmonary function, poor nutritional status, and greater risk of hospitalization. Furthermore, those with CFLD are at increased risk for vitamin deficiencies and endocrinopathies including CF-related diabetes, CF-related bone disease and hypogonadism, which can have further implications on disease outcomes and management. Effective treatment for CFLD remains limited and current interventions focus on optimization of nutritional status, identification and treatment of comorbid conditions, as well as early detection and management of CFLD specific sequelae such as portal hypertension or variceal bleeding. The extent to which highly effective modulator therapies may prevent the development or modify the progression of CFLD remains an active area of research. In this review, we discuss the challenges with defining and evaluating CFLD and the endocrine considerations and current management of CFLD.

7.
J Clin Transl Endocrinol ; 28: 100296, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35342717

RESUMO

Background: Diabetes and liver disease are life-threatening complications of cystic fibrosis (CF). CF-liver disease is a risk factor for CF related diabetes (CFRD) development, but the underlying mechanisms linking the two co-morbidities are not known. The objective of this pilot study was to characterize glucose metabolism in youth with CF with and without liver disease. Methods: In this two-center cross-sectional study, 20 youth with CF with and without liver disease underwent a 3-hour oral glucose tolerance test. Subjects were categorized by liver disease (LD) status [no LD, mild LD, severe LD] and diabetes status. Measures of glucose excursion, islet cell secretory responses, insulin sensitivity and clearance were obtained. Results: Participants with severe LD had the highest fasting, peak, and glucose area under the curve over 3 h (AUC3h) among individuals with CFRD (interaction p < 0.05). In parallel with glycemic changes, prandial ß-cell secretory response (AUC C-peptide 3h) was lower in those with severe LD compared to mild or no LD (p < 0.01). There was a trend of higher HOMA-IR in those with severe LD (p = 0.1) as well as lower fasting insulin clearance in those with mild and severe LD compared to no LD (p = 0.06) and lower prandial insulin clearance in severe LD among those with CFRD (interaction p = 0.1). Conclusion: In this small cohort, subjects with severe LD tended to have more impaired glycemia, insulin secretion, insulin sensitivity and clearance. Larger studies are imperative to define the pathogenesis to inform clinical care guidelines in terms of CFRD screening, diagnosis, and treatment options.

8.
Case Rep Womens Health ; 29: e00277, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33344177

RESUMO

INTRODUCTION: Peripartum cardiomyopathy (PPCM) is a rare and idiopathic form of dilated cardiomyopathy presenting late in pregnancy or early postpartum. Since the 16-kDa fragment of prolactin has been identified as a key factor in the pathophysiology of PPCM, prolactin inhibitors have been used as an adjuvant to standard heart failure treatment. Although bromocriptine is the current first choice, promising results have been reported with cabergoline, albeit scant. CASE PRESENTATION: We presented the case of a 41-year-old woman who received a diagnosis of PPCM one week after delivery and was successfully treated with cabergoline, finally experiencing a complete recovery. CONCLUSION: The case adds to the scant evidence supporting the use of cabergoline in PPCM patients. We argue that the favorable pharmacokinetic and metabolic profiles of this drug should prompt its consideration as a valid alternative prolactin inhibitor in these critical patients.

9.
MethodsX ; 8: 101334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430240

RESUMO

Acid oils and fatty acid distillates are by-products from the refining of edible oils and fats. They are used as feed ingredients, but their highly variable composition sometimes affects the productive parameters of the animals. Thus, their quality control and standardization are necessary. The official methods recommended for crude and refined fats and oils must be modified to give reliable results when applied to acid oils and fatty acid distillates. This article summarizes the drawbacks that were encountered during the setup of the analytical methods and how were they overcome by adapting the methods to these type of fat samples. Some methods such as the determinations of fatty acid composition, tocopherol and tocotrienol content, unsaponifiable matter, acidity and peroxide value had to be minimally adapted. However, others such as the determinations of moisture and volatile matter, insoluble impurities, lipid classes and p-anisidine value showed important drawbacks that required a more significant adaptation.•All the analytical methods have been successfully applied to acid oils and fatty acid distillates.•A detailed description of the sample preparation for analysis and applied analytical methods is provided as a compendium of methods in the supplementary material.•These methods will be extremely useful to improve the quality control of these heterogeneous feed ingredients.

10.
Acta Pharm Sin B ; 11(3): 668-679, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777674

RESUMO

Alcoholic liver disease (ALD) causes insulin resistance, lipid metabolism dysfunction, and inflammation. We investigated the protective effects and direct regulating target of S-allylmercaptocysteine (SAMC) from aged garlic on liver cell injury. A chronic ethanol-fed ALD in vivo model (the NIAAA model) was used to test the protective functions of SAMC. It was observed that SAMC (300 mg/kg, by gavage method) effectively ameliorated ALD-induced body weight reduction, steatosis, insulin resistance, and inflammation without affecting the health status of the control mice, as demonstrated by histological, biochemical, and molecular biology assays. By using biophysical assays and molecular docking, we demonstrated that SAMC directly targeted insulin receptor (INSR) protein on the cell membrane and then restored downstream IRS-1/AKT/GSK3ß signaling. Liver-specific knock-down in mice and siRNA-mediated knock-down in AML-12 cells of Insr significantly impaired SAMC (250 µmol/L in cells)-mediated protection. Restoration of the IRS-1/AKT signaling partly recovered hepatic injury and further contributed to SAMC's beneficial effects. Continuous administration of AKT agonist and recombinant IGF-1 in combination with SAMC showed hepato-protection in the mice model. Long-term (90-day) administration of SAMC had no obvious adverse effect on healthy mice. We conclude that SAMC is an effective and safe hepato-protective complimentary agent against ALD partly through the direct binding of INSR and partial regulation of the IRS-1/AKT/GSK3ß pathway.

11.
Transl Res ; 238: 12-24, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298148

RESUMO

In order to assess whether previous hepatic IR (Hepatic-IRfasting) and beta-cell functionality could modulate type 2 diabetes remission and the need for starting glucose-lowering treatment, newly-diagnosed type 2 diabetes participants who had never received glucose-lowering treatment (190 out of 1002) from the CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (a prospective, randomized and controlled clinical trial), were randomized to consume a Mediterranean or a low-fat diet. Type 2 diabetes remission was defined according to the American Diabetes Association recommendation for levels of HbA1c, fasting plasma glucose and 2h plasma glucose after oral glucose tolerance test, and having maintained them for at least 2 consecutive years. Patients were classified according to the median of Hepatic-IRfasting and beta-cell functionality, measured as the disposition index (DI) at baseline. Cox proportional hazards regression determined the potential for Hepatic-IRfasting and DI indexes as predictors of diabetes remission and the probability of starting pharmacological treatment after a 5-year follow-up. Low-Hepatic-IRfasting or high-DI patients had a higher probability of diabetes remission than high-Hepatic-IRfasting or low-DI subjects (HR:1.79; 95% CI 1.06-3.05; and HR:2.66; 95% CI 1.60-4.43, respectively) after a dietary intervention with no pharmacological treatment and no weight loss. The combination of low-Hepatic-IRfasting and high-DI presented the highest probability of remission (HR:4.63; 95% CI 2.00-10.70). Among patients maintaining diabetes, those with high- Hepatic-IRfasting and low-DI showed the highest risk of starting glucose-lowering therapy (HR:3.24;95% CI 1.50-7.02). Newly-diagnosed type 2 diabetes patients with better beta-cell functionality and lower Hepatic-IRfasting had a higher probability of type 2 diabetes remission in a dietary intervention without pharmacological treatment or weight loss, whereas among patients not achieving remission, those with worse beta-cell functionality and higher Hepatic-IRfasting index had the highest risk of starting glucose-lowering treatment after 5 years of follow-up.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Resistência à Insulina , Células Secretoras de Insulina/fisiologia , Alanina Transaminase/sangue , Diabetes Mellitus Tipo 2/etiologia , Dieta Mediterrânea , Ácidos Graxos/sangue , Feminino , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/patologia , Fígado/fisiologia , Masculino , Pessoa de Meia-Idade
12.
Acta Pharm Sin B ; 10(1): 61-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993307

RESUMO

Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.

13.
Mol Metab ; 6(8): 931-940, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752056

RESUMO

OBJECTIVE: The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INSC94Y transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. METHODS: Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. RESULTS: MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ∼1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ∼17,000 samples from ∼50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. CONCLUSIONS: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.


Assuntos
Líquidos Corporais , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Insulina/genética , Suínos/genética , Bancos de Tecidos , Animais , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/veterinária , Feminino , Alemanha
14.
J Funct Foods ; 38(Pt A): 378-388, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29129983

RESUMO

Oat ß-glucan has been shown to play a positive role in influencing lipid and cholesterol metabolism. However, the mechanisms behind these beneficial effects are not fully understood. The purpose of the current work was to investigate some of the possible mechanisms behind the cholesterol lowering effect of oat ß-glucan, and how processing of oat modulates lipolysis. ß-Glucan release, and the rate and extent of lipolysis measured in the presence of different sources of oat ß-glucan, were investigated during gastrointestinal digestion. Only a fraction of the original ß-glucan content was released during digestion. Oat flakes and flour appeared to have a more significant effect on lipolysis than purified ß-glucan. These findings show that the positive action of ß-glucan is likely to involve complex processes and interactions with the food matrix. This work also highlights the importance of considering the structure and physicochemical properties of foods, and not just the nutrient content.

15.
Mol Metab ; 5(5): 340-351, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27110486

RESUMO

OBJECTIVE: Non-shivering thermogenesis in brown adipose tissue (BAT) plays a central role in energy homeostasis. Thioesterase superfamily member 1 (Them1), a BAT-enriched long chain fatty acyl-CoA thioesterase, is upregulated by cold and downregulated by warm ambient temperatures. Them1 (-/-) mice exhibit increased energy expenditure and resistance to diet-induced obesity and diabetes, but the mechanistic contribution of Them1 to the regulation of cold thermogenesis remains unknown. METHODS: Them1 (-/-) and Them1 (+/+) mice were subjected to continuous metabolic monitoring to quantify the effects of ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C) on energy expenditure, core body temperature, physical activity and food intake. The effects of Them1 expression on O2 consumption rates, thermogenic gene expression and lipolytic protein activation were determined ex vivo in BAT and in primary brown adipocytes. RESULTS: Them1 suppressed thermogenesis in mice even in the setting of ongoing cold exposure. Without affecting thermogenic gene transcription, Them1 reduced O2 consumption rates in both isolated BAT and primary brown adipocytes. This was attributable to decreased mitochondrial oxidation of endogenous but not exogenous fatty acids. CONCLUSIONS: These results show that Them1 may act as a break on uncontrolled heat production and limit the extent of energy expenditure. Pharmacologic inhibition of Them1 could provide a targeted strategy for the management of metabolic disorders via activation of brown fat.

16.
EBioMedicine ; 3: 26-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870815

RESUMO

Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.


Assuntos
Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Gorduras na Dieta/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Animais , Comportamento Animal , Circulação Cerebrovascular , Análise por Conglomerados , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Aprendizagem em Labirinto , Síndrome Metabólica/fisiopatologia , Metaboloma , Metabolômica/métodos , Camundongos , Obesidade/metabolismo , Reconhecimento Psicológico , Redução de Peso
17.
Mol Metab ; 4(8): 551-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26266087

RESUMO

BACKGROUND & AIMS: Fibroblast growth factor 21 (FGF-21) is a liver-derived metabolic regulator induced by energy deprivation. However, its regulation in humans is incompletely understood. We addressed the origin and regulation of FGF-21 secretion in humans. METHODS: By determination of arterial-to-venous differences over the liver and the leg during exercise, we evaluated the organ-specific secretion of FGF-21 in humans. By four different infusion models manipulating circulating glucagon and insulin, we addressed the interaction of these hormones on FGF-21 secretion in humans. RESULTS: We demonstrate that the splanchnic circulation secretes FGF-21 at rest and that it is rapidly enhanced during exercise. In contrast, the leg does not contribute to the systemic levels of FGF-21. To unravel the mechanisms underlying the regulation of exercise-induced hepatic release of FGF-21, we manipulated circulating glucagon and insulin. These studies demonstrated that in humans glucagon stimulates splanchnic FGF-21 secretion whereas insulin has an inhibitory effect. CONCLUSIONS: Collectively, our data reveal that 1) in humans, the splanchnic bed contributes to the systemic FGF-21 levels during rest and exercise; 2) under normo-physiological conditions FGF-21 is not released from the leg; 3) a dynamic interaction of glucagon-to-insulin ratio regulates FGF-21 secretion in humans.

18.
J Clin Exp Hepatol ; 5(3): 190-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26628836

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) are serious conditions and are being diagnosed at an increased rate. The etiology of these hepatic disorders is not clear but involves insulin resistance and oxidative stress. Remogliflozin etabonate (Remo) is an inhibitor of the sodium glucose-dependent renal transporter 2 (SGLT2), and improves insulin sensitivity in type 2 diabetics. In the current study, we examined the effects of Remo in a diet-induced obese mouse model of NAFLD. METHODS: After 11-weeks on High-Fat-Diet 32 (HFD32), C57BL/6J mice were obese and displayed characteristics consistent with NAFLD. Cohorts of obese animals were continued on HFD32 for an additional 4-week treatment period with or without Remo. RESULTS: Treatment with Remo for 4 weeks markedly lowered both plasma alanine aminotransferase (76%) and aspartate aminotransferase (48%), and reduced both liver weight and hepatic triglyceride content by 42% and 40%, respectively. Remo also reduced hepatic mRNA content for tumor necrosis factor (TNF)-α (69%), and monocyte chemoattractant protein (MCP)-1 (69%). The diet-induced increase in thiobarbituric acid-reactive substances, a marker of oxidative stress, was reduced following treatment with Remo, as measured in both liver homogenates (22%) and serum (37%). Finally, the oxygen radical absorbance capacity (ORAC) in three different SGLT2 inhibitors was determined: remogliflozin, canagliflozin and dapagliflozin. Only remogliflozin had any significant ORAC activity. CONCLUSIONS: Remo significantly improved markers associated with NAFLD in this animal model, and may be an effective compound for the treatment of NASH and NAFLD due to its insulin-sensitizing and antioxidant properties.

19.
Adipocyte ; 4(2): 113-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167410

RESUMO

Growth hormone (GH) supplementation therapy to adults with GH deficiency has beneficial effects on adipose tissue lipid metabolism, improving thus adipocyte functional morphology and insulin sensitivity. However, molecular nature of these effects remains unclear. We therefore tested the hypothesis that lipid-mobilizing adipokine zinc-α2-glycoprotein is causally linked to GH effects on adipose tissue lipid metabolism. Seventeen patients with severe GH deficiency examined before and after the 5-year GH replacement therapy were compared with age-, gender- and BMI-matched healthy controls. Euglycemic hyperinsulinemic clamp was used to assess whole-body and adipose tissue-specific insulin sensitivity. Glucose tolerance was determined by oGTT, visceral and subcutaneous abdominal adiposity by MRI, adipocyte size morphometrically after collagenase digestion, lipid accumulation and release was studied in differentiated human primary adipocytes in association with GH treatment and zinc-α2-glycoprotein gene silencing. Five-year GH replacement therapy improved glucose tolerance, adipose tissue insulin sensitivity and reduced adipocyte size without affecting adiposity and whole-body insulin sensitivity. Adipose tissue zinc-α2-glycoprotein expression was positively associated with whole-body and adipose tissue insulin sensitivity and negatively with adipocyte size. GH treatment to adipocytes in vitro increased zinc-α2-glycoprotein expression (>50%) and was paralleled by enhanced lipolysis and decreased triglyceride accumulation (>35%). Moreover, GH treatment improved antilipolytic action of insulin in cultured adipocytes. Most importantly, silencing zinc-α2-glycoprotein eliminated all of the GH effects on adipocyte lipid metabolism. Effects of 5-year GH supplementation therapy on adipose tissue lipid metabolism and insulin sensitivity are associated with zinc-α2-glycoprotein. Presence of this adipokine is required for the GH action on adipocyte lipid metabolism in vitro.

20.
EBioMedicine ; 2(10): 1513-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26629547

RESUMO

BACKGROUND: Obesity is not a homogeneous condition across individuals since about 25-40% of obese individuals can maintain healthy status with no apparent signs of metabolic complications. The simple anthropometric measure of body mass index does not always reflect the biological effects of excessive body fat on health, thus additional molecular characterizations of obese phenotypes are needed to assess the risk of developing subsequent metabolic conditions at an individual level. METHODS: To better understand the associations of free fatty acids (FFAs) with metabolic phenotypes of obesity, we applied a targeted metabolomics approach to measure 40 serum FFAs from 452 individuals who participated in four independent studies, using an ultra-performance liquid chromatograph coupled to a Xevo G2 quadruple time-of-flight mass spectrometer. FINDINGS: FFA levels were significantly elevated in overweight/obese subjects with diabetes compared to their healthy counterparts. We identified a group of unsaturated fatty acids (UFAs) that are closely correlated with metabolic status in two groups of obese individuals who underwent weight loss intervention and can predict the recurrence of diabetes at two years after metabolic surgery. Two UFAs, dihomo-gamma-linolenic acid and palmitoleic acid, were also able to predict the future development of metabolic syndrome (MS) in a group of obese subjects. INTERPRETATION: These findings underscore the potential role of UFAs in the MS pathogenesis and also as important markers in predicting the risk of developing diabetes in obese individuals or diabetes remission after a metabolic surgery.


Assuntos
Ácidos Graxos Insaturados/sangue , Obesidade/metabolismo , Adulto , Biomarcadores , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/complicações , Obesidade/dietoterapia , Razão de Chances , Sobrepeso/sangue , Sobrepeso/complicações , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa