Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
FASEB J ; 38(5): e23524, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466191

RESUMO

The pathophysiology of osteoporosis is significantly influenced by the impaired functioning of osteoblasts, which is particularly caused by oxidative stress. Nevertheless, the underlying mechanisms responsible for this phenomenon are still not well understood. The objective of this study was to elucidate the impact of fibroblast growth factor 7 (FGF7) on the behavior of osteoblasts under conditions of oxidative stress. The osteoblast-like MC3T3 cells were pretreated with recombinant FGF7 in the presence of oxidative stress induced by hydrogen peroxide (H2 O2 ). We first provided the evidence that the endogenous FGF7 was significantly increased in osteoblasts in response to the increased H2 O2 levels. Recombined FGF7 demonstrated a remarkable capacity to resist the detrimental effects of H2 O2 -induced oxidative stress, including the increase in cell apoptosis, decrease in osteoblast viability, and impairment in osteogenic differentiation capacity, on osteoblasts. Furthermore, we extensively explored the mechanism underlying these protective effects and discovered a remarkable modulation of reactive oxygen species (ROS) homeostasis in H2 O2 -treated cells following the pronounced expression of FGF7, which significantly differed from the control group. Additionally, we observed that FGF7 exerted partial preservation on both the morphology and function of mitochondria when exposed to oxidative stress conditions. Furthermore, FGF7 exhibited the ability to enhance the activation of the p38/MAPK signaling pathway while concurrently suppressing the JNK/MAPK signaling pathway in response to oxidative stress. These results underscore the promising role and underlying mechanisms of FGF7 in preserving osteoblast homeostasis in the face of oxidative stress.


Assuntos
Fator 7 de Crescimento de Fibroblastos , Osteogênese , Mitocôndrias , Osteoblastos , Estresse Oxidativo , Linhagem Celular , Animais , Camundongos
2.
Differentiation ; 139: 100801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39048474

RESUMO

Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), is an important member of the FGF family that is mainly expressed by cells of mesenchymal origin while affecting specifically epithelial cells. Thus, FGF7 is widely expressed in diverse tissues, especially in urinary system, gastrointestinal tract (GI-tract), respiratory system, skin, and reproductive system. By interacting specifically with FGFR2-IIIb, FGF7 activates several downstream signal pathways, including Ras, PI3K-Akt, and PLCs. Previous studies of FGF7 mutants also have implicated its roles in various biological processes including development of essential organs and tissue homeostasis in adults. Moreover, more publications have reported that FGF7 and/or FGF7/FGFR2-IIIb-associated signaling pathway are involved in the progression of various heritable or acquired human diseases: heritable conditions like autosomal dominant polycystic kidney disease (ADPKD) and non-syndromic cleft lip and palate (NS CLP), where it promotes cyst formation and affects craniofacial development, respectively; acquired non-malignant diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), mucositis, osteoarticular disorders, and metabolic diseases, where it influences inflammation, repair, and metabolic control; and tumorigenesis and malignant diseases, including benign prostatic hyperplasia (BPH), prostate cancer, gastric cancer, and ovarian cancer, where it enhances cell proliferation, invasion, and chemotherapy resistance. Targeting FGF7 pathways holds therapeutic potential for managing these conditions, underscoring the need for further research to explore its clinical applications. Having more insights into the function and underlying molecular mechanisms of FGF7 is warranted to facilitate the development of effective treatments in the future. Here, we discuss FGF7 genomic structure, signal pathway, expression pattern during embryonic development and in adult organs and mutants along with phenotypes, as well as associated diseases.


Assuntos
Fator 7 de Crescimento de Fibroblastos , Transdução de Sinais , Humanos , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Animais , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
3.
J Transl Med ; 22(1): 280, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491511

RESUMO

BACKGROUND: Ovarian cancer (OC) is distinguished by its aggressive nature and the limited efficacy of current treatment strategies. Recent studies have emphasized the significant role of cancer-associated fibroblasts (CAFs) in OC development and progression. METHODS: Employing sophisticated machine learning techniques on bulk transcriptomic datasets, we identified fibroblast growth factor 7 (FGF7), derived from CAFs, as a potential oncogenic factor. We investigated the relationship between FGF7 expression and various clinical parameters. A series of in vitro experiments were undertaken to evaluate the effect of CAFs-derived FGF7 on OC cell activities, such as proliferation, migration, and invasion. Single-cell transcriptomic analysis was also conducted to elucidate the interaction between FGF7 and its receptor. Detailed mechanistic investigations sought to clarify the pathways through which FGF7 fosters OC progression. RESULTS: Our findings indicate that higher FGF7 levels correlate with advanced tumor stages, increased vascular invasion, and poorer prognosis. CAFs-derived FGF7 significantly enhanced OC cell proliferation, migration, and invasion. Single-cell analysis and in vitro studies revealed that CAFs-derived FGF7 inhibits the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF-1α) via FGFR2 interaction. Activation of the FGF7/HIF-1α pathway resulted in the upregulation of mesenchymal markers and downregulation of epithelial markers. Importantly, in vivo treatment with neutralizing antibodies targeting CAFs-derived FGF7 substantially reduced tumor growth. CONCLUSION: Neutralizing FGF7 in the medium or inhibiting HIF-1α signaling reversed the effects of FGF7-mediated EMT, emphasizing the dependence of FGF7-mediated EMT on HIF-1α activation. These findings suggest that targeting the FGF7/HIF-1α/EMT axis may offer new therapeutic opportunities to intervene in OC progression.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Fibroblastos Associados a Câncer/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Ovarianas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética
4.
Int Ophthalmol ; 44(1): 316, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969958

RESUMO

BACKGROUND: Diabetic cataract (DC) is a common complication of diabetes and its etiology and progression are multi-factorial. In this study, the roles of specific protein 1 (SP1) and fibroblast growth factor 7 (FGF7) in DC development were explored. METHODS: DC cell model was established by treating SRA01/04 cells with high glucose (HG). MTT assay was conducted to evaluate cell viability. Transwell assay and wound-healing assay were performed to assess cell migration and invasion. Western blot assay and qRT-PCR assay were conducted to measure the expression of N-cadherin, E-cadherin, Collagen I, Fibronectin, SP1 and FGF7 expression. CHIP assay and dual-luciferase reporter assay were conducted to analyze the combination between FGF7 and SP1. RESULTS: FGF7 was upregulated in DC patients and HG-induced SRA01/04 cells. HG treatment promoted SRA01/04 cell viability, migration, invasion and epithelial-mesenchymal transition (EMT), while FGF7 knockdown abated the effects. Transcription factor SP1 activated the transcription level of FGF7 and SP1 overexpression aggravated HG-induced SRA01/04 cell injury. SP1 silencing repressed HG-induced SRA01/04 cell viability, migration, invasion and EMT, but these effects were ameliorated by upregulating FGF7. Additionally, SP1 knockdown inhibited the PI3K/AKT pathway by regulating the transcription level of FGF7. CONCLUSION: Transcription factor SP1 activated the transcription level of FGF7 and the PI3K/AKT pathway to regulate HG-induced SRA01/04 cell viability, migration, invasion and EMT.


Assuntos
Movimento Celular , Sobrevivência Celular , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator 7 de Crescimento de Fibroblastos , Glucose , Cristalino , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Transcrição Sp1 , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucose/farmacologia , Células Epiteliais/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/farmacologia , Cristalino/metabolismo , Cristalino/citologia , Catarata/metabolismo , Células Cultivadas , Regulação da Expressão Gênica
5.
Anim Biotechnol ; : 1-9, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870116

RESUMO

Fibroblast growth factor 7 (FGF7) is involved in lipid metabolism, which is considered as a candidate gene with close relation with muscle development by eGWAs and RNA-Seq analyses. To date, limited research has been conducted on the relationship between FGF7 gene and growth traits. The main objective of this work was to further investigate the association between novel InDel within FGF7 gene and growth traits in goat. Herein, FGF7 mRNA expression levels were investigated in various Fuqing goat tissues. We found that FGF7 gene was expressed in six adult goat tissues with the highest mRNA levels in adipose tissue. This result suggested that FGF7 gene might play a critical role in fat deposition. We also detected potential polymorphisms in Fuqing, Nubian and Jianyang Daer breeds. A 22-bp InDel polymorphism in FGF7 gene was detected in 396 goats and the three genotypes were designated as II, ID, and DD. Correlation analysis revealed that InDel polymorphism was significantly associated with growth traits (P < 0.05). Goats with genotypes ID and/or II had superior growth traits compared to those with genotype DD. In summary, our findings suggested that the 22-bp InDel within FGF7 gene could act as a molecular marker to improve the growth traits of goats in breeding programs.

6.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L283-L293, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936509

RESUMO

Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Feminino , Humanos , Células Epiteliais Alveolares/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/metabolismo , Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
J Recept Signal Transduct Res ; 41(1): 19-31, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32586178

RESUMO

PURPOSE: MiR-199a-3p is low expressed in diabetic retinopathy (DR). In the current study, we investigated the effects of miR-199a-3p on DR and the potential mechanisms. METHODS: A DR rat model was established, and endothelial cells (ECs) and retinal pericytes (RPs) were extracted from the DR model rats to detect miR-199a-3p expression. Bioinformatics analysis predicted that fibroblast growth factor 7 (FGF7) was a target gene for miR-199a-3p, which was confirmed by dual-luciferase assay. Cell proliferation, migration, and invasion were detected by cell counting kit-8 (CCK-8), colony formation assay, wound-healing, and Transwell assay. Quantitative real-time polymerase chain reaction (q-PCR) and Western blot were performed to detect the expressions of mRNAs and proteins. RESULTS: MiR-199a-3p was low expressed and FGF7 was high-expressed in ECs and RPs. Overexpressed miR-199a-3p suppressed the proliferation, migration, and invasion, and FGF7 expression of ECs and RPs. However, overexpression of FGF7 effectively eliminated the suppressive effects of miR-199a-3p overexpression malignant behaviors of the cells. Meanwhile, up-regulation of FGF7 noticeably reversed the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the expression of epidermal growth factor receptor (EGFR) reduced by miR-199a-3p. CONCLUSION: Our findings revealed that in the DR rat model, miR-199a-3p inhibited cell proliferation, migration, and invasion of EC and RP through targeting FGF7 and inhibiting the activation of the EGFR/PI3K/AKT pathway. This study may provide a new direction for the search for the treatment of DR.


Assuntos
Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Receptores ErbB/genética , Fator 7 de Crescimento de Fibroblastos/genética , MicroRNAs/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Humanos , Proteína Oncogênica v-akt/genética , Pericitos/metabolismo , Pericitos/patologia , Fosfatidilinositol 3-Quinases/genética , Ratos , Retina/metabolismo , Retina/patologia , Transdução de Sinais/genética
8.
Exp Eye Res ; 207: 108572, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33844960

RESUMO

BACKGROUND: Posterior capsular opacification (PCO) is the major vision-disrupting complication arising after cataract surgery. Circular RNAs (circRNAs) are biological active RNAs which were involved in various physiological functions. So far, the role of circRNA caspase recruitment domain family member 6 (circ-CARD6) in PCO is still unclear. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the expression of circ-CARD6, microRNA 31 (miR-31) and fibroblast growth factor 7 (FGF7) message RNA (mRNA). Western blot was used to analyze the protein expression. Transmission electron microscopy (TEM) was employed to capture the exosome image. The proliferation and metastasis were analyzed by cell counting kit-8 (CCK8), transwell and wound healing assays. The potential binding sequences between miR-31 and circ-CARD6 or FGF7 were respectively predicted by Circinteractome and Targetscan online tool, and verified by dual-luciferase reporter and RNA binding protein immunoprecipitation (RIP) assays. RESULTS: Exosome-transmitted circ-CARD6 was highly expressed in PCO tissues and TGF-ß2-treated SRA01/04 cells. Circ-CARD6 deletion repressed the proliferation, metastasis, EMT process and MAPK pathway, which was reversed by anti-miR-31 in TGF-ß2-treated SRA01/04 cells. Meanwhile, circ-CARD6 sponged miR-31 which directly targeted FGF7 in TGF-ß2-treated SRA01/04 cells. FGF7 overexpression allayed miR-31 overexpression-induced suppression in proliferation, metastasis, EMT process and MAPK pathway. Besides, circ-CARD6 regulated FGF7 expression by sponging miR-31. CONCLUSION: Circ-CARD6 promoted PCO development via miR-31/FGF7 axis. This finding might contribute to the development of the targeted therapy for PCO.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Opacificação da Cápsula/genética , Exossomos/genética , Fator 7 de Crescimento de Fibroblastos/genética , MicroRNAs/genética , Cápsula Posterior do Cristalino/patologia , Western Blotting , Opacificação da Cápsula/patologia , Células Epiteliais/citologia , Regulação da Expressão Gênica/fisiologia , Humanos , Cristalino/citologia , Microscopia Eletrônica de Transmissão , RNA Circular/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Cicatrização/fisiologia
9.
Biochem Biophys Res Commun ; 529(2): 487-493, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703456

RESUMO

Protein phosphatase 5 (PP5) plays an important role in cell proliferation, differentiation, and development. Transgenic PP5 mice (Tg-hPP5 mice) overexpressing human PP5 gene were successfully generated by embryo injection. Tg-hPP5 mice spontaneously developed corneal hyperplasia and ocular surface squamous neoplasia (OSSN). To investigate the mechanism behind PP5-induced corneal hyperplasia, we performed immunohistochemistry, quantitative real-time PCR, and Western Blotting analyses on the corneas of Tg-hPP5 mice at 2 months and 9 months of age. We provide the first demonstration that Tg-hPP5 mice develop corneal hyperplasia at 9-months of age demonstrated via histological analysis and in vitro co-transfection investigation. We also present data that the expression of p53 is significantly reduced while the expression of FGF-7 is significantly increased in Tg-hPP5 mice with corneal hyperplasia. Co-transfection of PP5, p53, and FGF-7-promoter-driven luciferase revealed that PP5 promotes while p53 inhibits FGF-7 expression, which indicates PP5 overexpression inhibits p53 phosphorylation, thereby reducing its tumor suppressor function and increasing FGF-7 expression. In conclusion, PP5 plays a pivotal role in corneal hyperplasia development and its downregulation is a potential target for corneal hyperplasia and OSSN treatment.


Assuntos
Carcinoma de Células Escamosas/genética , Córnea/patologia , Neoplasias Oculares/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Regulação para Cima , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Córnea/metabolismo , Neoplasias Oculares/patologia , Feminino , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Phytother Res ; 34(2): 428-431, 2020 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-31680356

RESUMO

Hair loss affects millions of people worldwide, but currently available treatment options are often dissatisfying due to side effects or limited efficacy. Pea sprout extract has been shown to improve hair density when applied topically, but its mode of action and effectiveness upon oral administration remain unknown. Our study has now shown that the application of a fluid containing 2% pea sprout extract on a defined scalp zone of 10 volunteers enhances the expression of defined genes relevant for hair, namely fibroblast growth factor-7 (FGF7) and noggin, by 56 and 85%, respectively. Additionally, a subsequent pilot nutrition intervention study in 21 volunteers proved that pea sprout extract is also effective when consumed as dietary supplement. The daily intake of 100 mg pea sprout extract (AnaGain™ Nu) for 8 weeks significantly reduced hair loss already after 28 days of treatment (p < 0.002). No adverse events were reported. Consequently, pea sprout extract may be an effective means to safely promote hair growth and reduce hair loss in individuals experiencing excessive hair shedding.


Assuntos
Alopecia/tratamento farmacológico , Suplementos Nutricionais , Pisum sativum/química , Extratos Vegetais/uso terapêutico , Administração Cutânea , Administração Oral , Adulto , Proteínas de Transporte/genética , Feminino , Fator 7 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Plântula/química , Adulto Jovem
11.
J Mol Cell Cardiol ; 130: 23-35, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858037

RESUMO

OBJECTIVE: To analyze the effects of miR-455-3p-1 and its possible mechanisms in pulmonary arterial hypertension (PAH). METHODS: A microarray assay was used to examine the expressed genes between normal and PAH. The expressed genes in PAH was assessed by qRT-PCR. The targeted interaction between miRNAs and FGF7 was confirmed using a dual luciferase reporter assay. A CCK-8 assay and cell count were used to analyze the pulmonary artery smooth muscle cells (PASMCs) activity and proliferation level, respectively. Apoptotic PASMCs were detected by flow cytometry. In addition, the mRNA and protein expression levels of RAS/ERK signaling pathway were determined by qRT-PCR and a Western blot assay, respectively. A PAH rat model was used to identify the effects of miR-455-3p-1 in vivo. RESULTS: FGF7 was upregulated in PAH. MiR-455-3p-1 was downregulated in PAH. MiR-455-3p-1 targeted FGF7. MiR-455-3p-1 decreased the expression of FGF7. Moreover, the effect of FGF7 on PASMCs was suppressed by miR-455-3p-1. MiR-455-3p-1 upregulation was associated with reduced mRNA and protein levels of core RAS/ERK signal genes, suggesting the inhibition of the RAS/ERK pathway. Furthermore, miR-455-3p-1 upregulation improved the RVSP, mPAP, ratio of RV/LV + S, CO and RV function of PAH rat model in vivo. CONCLUSION: Our findings illustrate a role for miR-455-3p-1 in modulating FGF7-RAS/ERK signaling and suggest that an agomir of miR-455-3p-1 could inhibit the proliferation of PASMCs and mitigate PAH in vivo.


Assuntos
Fator 7 de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Hipertensão Arterial Pulmonar/patologia , Ratos
12.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L283-L294, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166130

RESUMO

Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts. They also reduced fibroblast expression of hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7, KGF), and FGF10. When type II cells were cultured at an air-liquid interface to maintain high levels of surfactant protein expression, this inhibitory activity was lost. When type II cells were cultured on collagen-coated tissue culture wells to reduce surfactant protein expression further and increase the expression of some type I cell markers, the epithelial cells suppressed transforming growth factor-ß (TGF-ß)-stimulated ACTA2 and connective tissue growth factor (CTGF) expression in lung fibroblasts. Our results suggest that transitional alveolar type II cells and likely type I cells but not fully differentiated type II cells inhibit matrix and growth factor expression in fibroblasts. These cells express markers of both type II cells and type I cells. This is probably a normal homeostatic mechanism to inhibit the fibrotic response in the resolution phase of wound healing. Defining how transitional type II cells convert activated fibroblasts into a quiescent state and inhibit the effects of TGF-ß may provide another approach to limiting the development of fibrosis after alveolar injury.


Assuntos
Células Epiteliais Alveolares/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Cultivadas , Colágeno/farmacologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Surfactantes Pulmonares/metabolismo
13.
BMC Med Genet ; 20(1): 33, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777021

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) of a large cohort of subjects with chronic obstructive pulmonary disease (COPD) have successfully identified multiple risk genes, including fibroblast growth factor 7 (FGF7). However, the underlying molecular mechanism influencing function of FGF7 and risk of COPD remains further study. METHODS: In this study, we replicated the genetic association of variants near the FGF7 gene in 258 Chinese Han patients with COPD and 311 healthy controls. Additionally, we functionally evaluated a candidate causal variant upstream of the FGF7 gene. RESULTS: The most significant association was observed at rs12905203 (P = 5.9 × 10- 3, odd ratio, OR = 1.516) that explains associations of previously reported variants at the FGF7 locus. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays showed that the risk allele of the variant was bound to activator protein 1 transcription factors (c-Fos and c-Jun) with a significantly reduced affinity and associated with decreased mRNA expression of FGF7 in fibroblast cells at both resting and PMA/Ionomycin-stimulated conditions. Overexpression of c-Fos and c-Jun proteins or stimulation with PMA/Ionomycin significantly increases mRNA expression of FGF7 in fibroblast cells. Bioinformatic analysis showed that the variant overlaps with multiple genetic regulatory marks, suggesting the regulatory DNA element might function as an enhancer for the FGF7 gene. Luciferase enhancer activity assays demonstrated that the DNA sequences carrying the variant produce enhancer activity while the risk allele of the variant reduces its activity. CONCLUSIONS: In this study, we demonstrated a consistent association of the FGF7 gene with COPD and mechanistically characterized a candidate functional variant upstream of the FGF7 gene. These data highlighted the important role of the risk variant and the FGF7 gene in influencing risk for COPD.


Assuntos
Fator 7 de Crescimento de Fibroblastos/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Fator de Transcrição AP-1/metabolismo , Idoso , Estudos de Casos e Controles , China/etnologia , Feminino , Fator 7 de Crescimento de Fibroblastos/metabolismo , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Doença Pulmonar Obstrutiva Crônica/etnologia , Doença Pulmonar Obstrutiva Crônica/metabolismo
14.
Acta Biochim Biophys Sin (Shanghai) ; 51(10): 1056-1063, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31555794

RESUMO

The purpose of this study was to uncover the mechanism of tumor necrosis factor (TNF)-α induction by fibroblast growth factor-7 (FGF-7) in human HaCaT cells and the potential role of FGF-7-specific antibody F-9 in psoriatic therapy. TNF-α expression in HaCaT cells induced by FGF-7 was analyzed by quantitative polymerase chain reaction, western blot analysis, and enzyme-linked immunosorbent assays. In vivo, the BALB/c mouse psoriasis model established by topical application of imiquimod (IMQ) was used to determine the role of FGF-7-specific antibody (F-9) in skin inflammation. We found that induction of TNF-α expression by FGF-7 in HaCaT cells was suppressed by FGF-7-specific antibody F-9. Western blot analysis results showed that FGF-7 induced TNF-α expression in HaCaT cells via the FGF receptor 2 (FGFR2)/AKT/NF-κB signaling pathway. In vivo, F-9 could significantly ameliorate the inflammations in a mouse psoriatic model evaluated by Psoriasis Area and Severity Index scores and ear thickness, which was consistent with the results of hematoxylin-eosin staining, immunohistochemistry assay, and western blot analysis. These results indicate that FGF-7 induces TNF-α expression in HaCaT cells and FGF-7 antibody F-9 alleviates IMQ-induced psoriasiform in mice. Therefore, FGF-7/FGFR2 signaling pathway is a potential target for psoriasis treatment.


Assuntos
Fator 7 de Crescimento de Fibroblastos/imunologia , Queratinócitos/imunologia , Psoríase/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , Psoríase/patologia , Psoríase/terapia
15.
Lasers Surg Med ; 47(1): 50-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25557083

RESUMO

BACKGROUND AND OBJECTIVES: Hair follicles are located at the interface of the external and internal environments and their cycling has been shown to be regulated by intra- and extra-follicular factors. The aim of this study is to examine whether or how hair follicles respond to visible light. STUDY DESIGN/MATERIALS AND METHODS: We examined the effect of 3 mW red (630 nm, 1 J/cm(2)), 2 mW green (522 nm, 1 J/cm(2)), and 2 mW blue light (463 nm, 1 J/cm(2)) on telogen in mice for 3 weeks. The photobiologic effects of red light on cell proliferation of outer root sheath keratinocytes and dermal papilla cells were studied in vitro. RESULTS: We found that red light accelerated anagen entry faster than green and blue light in mice. Red light irradiation stimulated the proliferation of both outer root sheath keratinocytes and dermal papilla cells in a dose-dependent manner by promoting cell cycle progression. This stimulative effect was mediated via extracellular signal-regulated kinase phosphorylation in both cells. In a co-culture condition, dermal papilla cells irradiated by red light further enhanced keratinocyte proliferation, suggesting enhanced epithelial-mesenchymal interaction. In search for factors that mediated this paracrine effect, we found fibroblast growth factor 7 was upregulated in both mRNA and protein levels. The stimulative paracrine effect on keratinocytes was significantly inhibited by neutralizing antibody against fibroblast growth factor 7. CONCLUSIONS: These results suggest that hair follicles respond to visible light in vivo. Red light may promote physiological telogen to anagen transition by directly stimulating outer root sheath keratinocytes and indirectly by enhancing epithelial-mesenchymal interaction in vitro.


Assuntos
Folículo Piloso/efeitos da radiação , Luz , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos da radiação , Derme/metabolismo , Derme/efeitos da radiação , Feminino , Fator 7 de Crescimento de Fibroblastos/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos da radiação , Folículo Piloso/fisiologia , Técnicas In Vitro , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
16.
J Artif Organs ; 18(4): 315-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26026790

RESUMO

The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor ß1 (TGF-ß1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-ß1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application.


Assuntos
Células Sanguíneas/fisiologia , Medicina Regenerativa/instrumentação , Úlcera Cutânea/terapia , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Cicatrização/fisiologia , Animais , Ácido Láctico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Poliésteres , Polímeros , Úlcera Cutânea/etiologia , Úlcera Cutânea/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Orthop Res ; 42(5): 961-972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37990927

RESUMO

Chordae tendineae, referred to as heart tendinous cords, act as tendons connecting the papillary muscles to the valves in the heart. Their role is analogous to tendons in the musculoskeletal system. Despite being exposed to millions of cyclic tensile stretches over a human's lifetime, chordae tendineae rarely suffer from overuse injuries. On the other hand, musculoskeletal tendinopathy is very common and remains challenging in clinical treatment. The objective of this study was to investigate the mechanism behind the remarkable durability and resistance to overuse injuries of chordae tendineae, as well as to explore their effects on flexor tenocyte biology. The messenger RNA expression profiles of chordae tendineae were analyzed using RNA sequencing and verified by quantitative reverse transcription polymerase chain reaction  and immunohistochemistry. Interestingly, we found that periostin (Postn) and fibroblast growth factor 7 (FGF7) were expressed at significantly higher levels in chordae tendineae, compared to flexor tendons. We further treated flexor tenocytes in vitro with periostin and FGF7 to examine their effects on the proliferation, migration, apoptosis, and tendon-related gene expression of flexor tenocytes. The results displayed enhanced cell proliferation ability at an early stage and an antiapoptotic effect on tenocytes, while treated with periostin and/or FGF7 proteins. Furthermore, there was a trend of promoted tenocyte migration capability. These findings indicated that Postn and FGF7 may represent novel cytokines to target flexor tendon healing. Clinical significance: The preliminary discovery leads to a novel idea for treating tendinopathy in the musculoskeletal system using specific molecules identified from chordae tendineae.


Assuntos
Transtornos Traumáticos Cumulativos , Tendinopatia , Animais , Cães , Humanos , Cordas Tendinosas/fisiologia , Tenócitos/fisiologia , Periostina , Fator 7 de Crescimento de Fibroblastos , Expressão Gênica , Biologia
18.
Biotechnol J ; 19(5): e2300596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719591

RESUMO

Although fibroblast growth factor 7 (FGF7) is known to promote wound healing, its mass production poses several challenges and very few studies have assessed the feasibility of producing FGF7 in cell lines such as Chinese hamster ovary (CHO) cells. Therefore, this study sought to produce recombinant FGF7 in large quantities and evaluate its wound healing effect. To this end, the FGF7 gene was transfected into CHO cells and FGF7 production was optimized. The wound healing efficacy of N-glycosylated FGF7 was evaluated in animals on days 7 and 14 post-treatment using collagen patches (CPs), FGF7-only, and CP with FGF7 (CP+FGF7), whereas an untreated group was used as the control. Wound healing was most effective in the CP+FGF7 group. Particularly, on day 7 post-exposure, the CP+FGF7 and FGF7-only groups exhibited the highest expression of hydroxyproline, fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor. Epidermalization in H&E staining showed the same order of healing as hydroxyproline content. Additionally, the CP+FGF7 and FGF7-only group exhibited more notable blood vessel formation on days 7 and 14. In conclusion, the prepared FGF7 was effective in promoting wound healing and CHO cells can be a reliable platform for the mass production of FGF7.


Assuntos
Cricetulus , Fator 7 de Crescimento de Fibroblastos , Proteínas Recombinantes , Cicatrização , Animais , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cicatrização/efeitos dos fármacos , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Humanos , Cricetinae , Hidroxiprolina/metabolismo , Transfecção , Colágeno/metabolismo
19.
Biotechnol J ; 19(3): e2300712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528341

RESUMO

Human fibroblast growth factor 7 (hFGF7) is a member of the paracrine-acting FGF family and mediates various reactions such as wound healing, tissue homeostasis, and liver regeneration. These activities make it a plausible candidate for pharmaceutical applications as a drug. However, the low expression level and stability of the recombinant hFGF7 were known to be major hurdles for further applications. Here, the expression level and stability of hFGF7 were attempted to improve by changing the order of amino acids through circular permutation (CP), thereby expecting an alternative fate according to the N-end rule. CP-hFGF7 variants were constructed systematically by using putative amino acid residues in the loop region that avoided the disruption of the structural integrity especially in the functional motif. Among them, cp-hFGF7115-114 revealed a relatively higher expression level in the soluble fraction than the wild-type hFGF7 and was efficiently purified (7 mg L-1) to apparent homogeneity. The activity and stability of the purified variant cp-hFGF7115-114 were comparable or superior to that of the wild-type hFGF7, thereby strongly suggesting that CP could be an alternative tool for the functional expression of hFGF7 in Escherichia coli.


Assuntos
Fator 7 de Crescimento de Fibroblastos , Humanos
20.
Thorac Cancer ; 15(17): 1357-1368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709912

RESUMO

BACKGROUND: Berberine (BBR), an isoquinoline alkaloid from Coptidis rhizoma, has been found to have powerful activities against various human malignancies, including breast cancer. However, the underlying antitumor mechanisms of BBR in breast cancer remain poorly understood. METHODS: Breast cancer cells were cultured and treated with different doses (0, 20, 40, and 60 µM) of BBR for 48 h. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. Fibroblast growth factor 7 (FGF7), methyltransferase-like 3 (METTL3), and insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) mRNA levels and protein levels were measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Interaction between METTL3 and FGF7 m6A was assessed using methylated RNA immunoprecipitation (MeRIP)-qPCR and RNA immunoprecipitation (RIP) assay. Binding ability between IGF2BP3 and FGF7 mRNA was analyzed using RIP assay. RESULTS: BBR treatment hindered breast cancer cell proliferation, invasion, migration, and induced apoptosis. FGF7 expression was upregulated in breast cancer tissues, while its level was reduced in BBR-treated tumor cells. FGF7 upregulation relieved the repression of BBR on breast cancer cell malignant behaviors. In mechanism, METTL3 stabilized FGF7 mRNA through the m6A-IGF2BP3-dependent mechanism and naturally improved FGF7 expression. BBR treatment inhibited breast cancer growth in vivo. CONCLUSION: BBR treatment blocked breast cancer cell growth and metastasis partly by regulating METTL3-mediated m6A modification of FGF7 mRNA, providing a promising therapeutic target for breast cancer treatment.


Assuntos
Berberina , Neoplasias da Mama , Proliferação de Células , Fator 7 de Crescimento de Fibroblastos , Metiltransferases , RNA Mensageiro , Humanos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Feminino , Camundongos , Proliferação de Células/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fator 7 de Crescimento de Fibroblastos/genética , Apoptose/efeitos dos fármacos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa