Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Mol Life Sci ; 79(7): 377, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737114

RESUMO

We aimed to study mechanisms controlling metastatic outgrowth of melanoma into clinically relevant lesions, a critical process responsible for the majority of melanoma deaths. To this end, we developed novel in vivo models and identified molecular events that can be ascribed to their distinct phenotypes, indolent or highly metastatic. Induction of a proliferative state at distant sites was associated with high levels of the stem-like/progenitor marker, SOX2, and required the upregulation of FMOD, an extracellular matrix component, which modulates tumor-stroma interactions. Functional studies revealed a possible link between FMOD and SOX2; dual FMOD and SOX2 silencing nearly abolished brain metastasis and had a similar effect on distant metastasis to other sites. Our in vitro data suggests that FMOD and SOX2 cooperation plays an important role in tumor vasculogenic mimicry. Furthermore, we found that FMOD and SOX2 functional roles might converge at the activation of transcriptional co-factors YAP and TAZ, possibly via crosstalk with the tumor suppressor Hippo pathway. Finally, high expression of both genes in patient specimens predicted early development of brain metastasis. Thus, our study identifies FMOD and SOX2 cooperation as a novel regulatory mechanism that might be linked functionally to melanoma metastatic competence.


Assuntos
Melanoma , Neoplasias Encefálicas/secundário , Fibromodulina/genética , Fibromodulina/metabolismo , Humanos , Melanoma/genética , Metástase Neoplásica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
2.
Exp Cell Res ; 378(1): 11-20, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817928

RESUMO

Sclerotome is the embryonic progenitor of the axial skeleton. It was previously shown that Tgfbr2 is required in sclerotome for differentiation of fibrous skeletal tissues including the annulus fibrosus of the intervertebral disc. Alternatively, BMP signaling is required to form the vertebral body through chondrogenesis. In addition, TGFß added to sclerotome cultures induces expression of markers for fibrous tissue differentiation but not cartilage or bone. The mechanism of how TGFß signaling regulates this lineage decision in sclerotome is not known and could be due to the production of instructive or inhibitory signals or a combination of the two. Here we show that TGFß antagonizes BMP/ Smad1/5 signaling in primary sclerotome likely through regulation of Noggin, an extracellular BMP antagonist, to prevent chondrogenesis. We then tested whether inhibition of BMP signaling, and inhibition of chondrogenesis, is sufficient to push cells toward the fibrous cell fate. While Noggin inhibited BMP/ Smad1/5 signaling and the formation of chondrogenic nodules in sclerotome cultures; Noggin and inhibition of BMP signaling through Gremlin or DMH2 were insufficient to induce fibrous tissue differentiation. The results suggest inhibition of BMP signaling is not sufficient to stimulate fibrous tissue differentiation and additional signals are likely required. We propose that TGFß has a dual role in regulating sclerotome fate. First, it inhibits BMP signaling potentially through Noggin to prevent chondrogenesis and, second, it provides an unknown instructive signal to promote fibrous tissue differentiation in sclerotome. The results have implications for the design of stem cell-based therapies for skeletal diseases.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Condrócitos/citologia , Fibroblastos/citologia , Células-Tronco Embrionárias Murinas/citologia , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Citocinas/metabolismo , Fibroblastos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(2): 165-170, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32220183

RESUMO

OBJECTIVE: To investigate the regulation of fibromodulin (FMOD) on proliferation, adhesion and migration of non-small cell lung cancer cell line H322, and discuss its action mechanism. METHODS: H322 cells were randomly divided into control group, small interfering RNA (siRNA) silencing FMOD ( FMOD siRNA) group and control siRNA (Con siRNA) group. FMOD siRNA and Con siRNA were transfected into H322 cells. The cell viability of each group was detected by CCK-8 method. The adhesion ability of cells was detected by fluorescein diacetate (FDA) fluorescent staining. The cell migration ability was detected by Transwell method. Real time-PCR was used to detect the mRNA expressions of Cyclin D1, intercellular adhesion molecule -1 (ICAM-1), E-cadherin, FMOD, transforming growth factor-ß (TGF-ß), Smad2, Smad3, Smad4 and Smad7 in cells. The protein expressions of Cyclin D1, ICAM-1, E-cadherin, FMOD, TGF-ß1, Smad2, Smad3, Smad4 and Smad7 were detected by Western blot. RESULTS: Compared with the Con siRNA group, the cell viability, cell adhesion and migration ability of the FMOD siRNA group were decreased, and the difference was statistically significant ( P<0.01). There was no significant difference between the control group and the Con siRNA group. Real time-PCR and Western blot results showed that the mRNA and protein expression levels of Cyclin D1, ICAM-1, TGF-ß1, Smad2, Smad3 and Smad4 were decreased in FMOD siRNA group, compared with Con siRNA group, while the mRNA and protein expression levels of E-cadherin and Smad7 are elevated. CONCLUSION: Silencing of the FMOD gene significantly reduces the proliferation, adhesion and migration of H322 cells, which may be conducted by inhibiting the TGF-ß/Smad signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fibromodulina/genética , Inativação Gênica , Neoplasias Pulmonares , Proteínas Smad , Fator de Crescimento Transformador beta , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Adesão Celular , Movimento Celular , Proliferação de Células , Fibromodulina/fisiologia , Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Proteínas Smad/fisiologia , Fator de Crescimento Transformador beta/fisiologia
4.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700002

RESUMO

BACKGROUND: Cartilage regeneration requires a balance of anabolic and catabolic processes. AIM: To examine the susceptibility of fibromodulin (FMOD) and lumican (LUM) to degradation by MMP-13, ADAMTS-4 and ADAMTS-5, the three major degradative proteinases in articular cartilage, in cartilage development and in osteoarthritis (OA). METHODS: Immunolocalization of FMOD and LUM in fetal foot and adult knee cartilages using an FMOD matrix metalloprotease (MMP)-13 neoepitope antibody (TsYG11) and C-terminal anti-FMOD (PR184) and anti-LUM (PR353) antibodies. The in vitro digestion of knee cartilage with MMP-13, A Disintegrin and Metalloprotease with Thrompospondin motifs (ADAMTS)-4 and ADAMTS-5, to assess whether FMOD and LUM fragments observed in Western blots of total knee replacement specimens could be generated. Normal ovine articular cartilage explants were cultured with interleukin (IL)-1 and Oncostatin-M (OSM) ± PGE3162689, a broad spectrum MMP inhibitor, to assess FMOD, LUM and collagen degradation. RESULTS AND DISCUSSION: FMOD and LUM were immunolocalized in metatarsal and phalangeal fetal rudiment cartilages and growth plates. Antibody TsYG11 localized MMP-13-cleaved FMOD in the hypertrophic chondrocytes of the metatarsal growth plates. FMOD was more prominently localized in the superficial cartilage of normal and fibrillated zones in OA cartilage. TsYG11-positive FMOD was located deep in the cartilage samples. Ab TsYG11 identified FMOD fragmentation in Western blots of normal and fibrillated cartilage extracts and total knee replacement cartilage. The C-terminal anti-FMOD, Ab PR-184, failed to identify FMOD fragmentation due to C-terminal processing. The C-terminal LUM, Ab PR-353, identified three LUM fragments in OA cartilages. In vitro digestion of human knee cartilage with MMP-13, ADAMTS-4 and ADAMTS-5 generated FMOD fragments of 54, 45 and 32 kDa similar to in blots of OA cartilage; LUM was less susceptible to fragmentation. Ab PR-353 detected N-terminally processed LUM fragments of 39, 38 and 22 kDa in 65⁻80-year-old OA knee replacement cartilage. FMOD and LUM were differentially processed in MMP-13, ADAMTS-4 and ADAMTS-5 digestions. FMOD was susceptible to degradation by MMP-13, ADAMTS-4 and to a lesser extent by ADAMTS-5; however, LUM was not. MMP-13-cleaved FMOD in metatarsal and phalangeal fetal rudiment and growth plate cartilages suggested roles in skeletogenesis and OA pathogenesis. Explant cultures of ovine cartilage stimulated with IL-1/OSM ± PGE3162689 displayed GAG loss on day 5 due to ADAMTS activity. However, by day 12, the activation of proMMPs occurred as well as the degradation of FMOD and collagen. These changes were inhibited by PGE3162689, partly explaining the FMOD fragments seen in OA and the potential therapeutic utility of PGE3162689.


Assuntos
Proteína ADAMTS4/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Fibromodulina/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Animais , Humanos , Lumicana/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Ovinos
5.
J Cell Physiol ; 234(1): 927-939, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30144066

RESUMO

PURPOSE: Osteoarthritis (OA) is a degenerative joint disease that leads to the destruction of joint function. The aim of this study is to investigate the effects of microRNA-340-5p (miR-340-5p) and its target gene, FMOD, on the proliferation and apoptosis of chondrocytes in mice with OA through the extracellular signal-regulated kinase (ERK) signaling pathway. MATERIALS: Twenty healthy C57BL/6J mice aged 15 months with a weight of 50 ± 2 g were selected. Ten mice were treated using a unilateral knee anterior cruciate ligament transection as well as a medial meniscectomy to establish the OA model. Besides, another 10 mice were used as the control group. METHODS: A reverse transcription quantitative polymerase chain reaction and Western blot analysis methods were used to examine the expressions of related genes in cells of each group. A 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide assay and flow cytometry were also conducted to evaluate the cell function after transfection had been completed. RESULTS: The expressions of fibromodulin (FMOD), type II collagen (Col II), B-cell lymphoma-2 (Bcl-2), sex-determining region of Y chromosome (SRY)-related high-mobility group-box gene 9 (Sox9), and proliferating cell nuclear antigen (PCNA) were decreased, whereas the expressions of miR-340-5p, runt-related transcription factor-2 (Runx2), Bcl-2-associated X protein (Bax), and ERK1/2 were elevated in the OA mice. Downregulation of miR-340-5p and upregulation of FMOD decreased the expressions of Runx2, Bax, and ERK1/2, and cell apoptosis of chondrocytes, and increased the expressions of FMOD, Col II, Bcl-2, Sox9, and PCNA, and cell proliferation. CONCLUSION: This study suggests that downregulation of miR-340-5p plays a role in promoting cell proliferation and suppressing cell apoptosis of chondrocytes in OA mice through inhibition of the ERK signaling pathway via the FMOD gene.


Assuntos
Proliferação de Células/genética , Fibromodulina/genética , MicroRNAs/genética , Osteoartrite/genética , Animais , Apoptose/genética , Condrócitos/citologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , NF-kappa B/genética , Osteoartrite/patologia
6.
FASEB J ; 29(2): 662-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406462

RESUMO

The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.


Assuntos
Quimiocina CCL2/metabolismo , Melanócitos/citologia , Neovascularização Patológica , Pigmentação da Pele , Negro ou Afro-Americano , Indutores da Angiogênese/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Ensaio de Imunoadsorção Enzimática , Proteínas da Matriz Extracelular/metabolismo , Fibromodulina , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microcirculação , NF-kappa B/metabolismo , Pigmentação , Proteoglicanas/metabolismo
7.
J Cell Biochem ; 115(10): 1816-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905804

RESUMO

Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1, and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement, and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10-fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while upregulating WNT-related genes (WISP2, SFRP2, and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic, and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility.


Assuntos
Tecido Adiposo/citologia , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Adipogenia/genética , Sequência de Bases , Comunicação Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células/genética , Terapia Baseada em Transplante de Células e Tecidos , Replicação do DNA/genética , Matriz Extracelular/genética , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Fator 4 Semelhante a Kruppel , Proteínas de Membrana/metabolismo , Mitose/genética , Análise de Sequência de RNA , Antígenos Thy-1/biossíntese
8.
Neuromolecular Med ; 26(1): 24, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864941

RESUMO

Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale (SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurological Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expression levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients' serum. Overexpression of FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR suggested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD's protective effects. FMOD exhibits potential as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/mTOR signaling pathway.


Assuntos
Lesões Encefálicas Traumáticas , Depressão , Fibromodulina , Hipocampo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Lesões Encefálicas Traumáticas/complicações , Espinhas Dendríticas/efeitos dos fármacos , Depressão/etiologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sinapses , Serina-Treonina Quinases TOR/metabolismo , Fibromodulina/genética , Fibromodulina/metabolismo
9.
Eur J Pharm Biopharm ; 199: 114291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641230

RESUMO

The CLEFF4 sub clone from stock late passage Caco2 cells has a unique property of being able to develop polarised cell monolayers with high P-gp expression and tight junctions much quicker than the original cell line. Instead of being useful for transport studies 21-24 days after initiating culture, the CLEFF4 cell line matures in 5-6 days with tight junctions surpassing that of 3 week old Caco2 cells in that time frame [1]. This has enabled the CLEFF4 cell line to provide measures of apparent permeability for potential drug candidates, so important for pre-clinical drug development, 4 times faster than the original cell line. RNA samples were collected and analysed at days 4 and 7 of culture over a 3 year period and had full RNA transcriptome analysed by the ranaseq.eu open bioinformatics platform. Protein was also collected from day 4 to day 22 of culture. Differential expression data from the FASTQ files have shown significant differences in expression in multiple genes involved with drug efflux, tight junctions, phase 2 metabolism and growth factors, which have been confirmed from protein determination that may hold the key to understanding accelerated human cell maturation. These gene expression results may be significant for other tissues beyond the gastrointestinal tract, and potentially for accelerated cell growth for the new field of laboratory grown tissues for organ replacement. The data also confirms the different genetic expression in CLEFF4 cells compared to Caco2 and the stable nature of the different expression over many years.


Assuntos
Junções Íntimas , Transcriptoma , Humanos , Células CACO-2 , Junções Íntimas/metabolismo , Western Blotting
10.
Biomedicines ; 11(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37509645

RESUMO

Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.

11.
Matrix Biol ; 105: 53-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863915

RESUMO

The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Neoplasias do Colo do Útero , Animais , Biglicano/genética , Biglicano/metabolismo , Colo do Útero/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina/genética , Decorina/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Fibromodulina , Humanos , Lumicana/genética , Camundongos , Gravidez , Proteoglicanos Pequenos Ricos em Leucina/genética
12.
Cancers (Basel) ; 13(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283070

RESUMO

Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan-Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue.

13.
Animals (Basel) ; 10(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842630

RESUMO

Fibromodulin (Fmod), which is an extracellular matrix protein, belongs to the extracellular matrix small-leucine-rich proteoglycan family. Fmod is abundantly expressed in muscles and connective tissues and is involved in biological regulation processes, including cell apoptosis, cell adhesion, and modulation of cytokine activity. Fmod is the main regulator of myostatin, which controls the development of muscle cells, but its regulatory path is unknown. Chicken models are ideal for studying embryonic skeletal muscle development; therefore, to investigate the mechanism of Fmod in muscle development, Fmod-silenced and Fmod-overexpressed chicken myoblasts were constructed. The results showed that Fmod plays a positive role in differentiation by detecting the expression of myogenic differentiation markers, immunofluorescence of MyHC protein, and myotube formation in myoblasts. Fmod regulates expression of atrophy-related genes to alleviate muscle atrophy, which was confirmed by histological analysis of breast muscles in Fmod-modulated chicks in vivo. Additionally, genes differentially expressed between Fmod knockdown and normal myoblasts were enriched in the signaling pathway of transforming growth factor ß (TGF-ß). Both Fmod-silenced and Fmod-overexpressed myoblasts regulated the expression of TGFBR1 and p-Smad3. Thus, Fmod can promote differentiation but not proliferation of myoblasts by regulating the TGF-ß signaling pathway, which may serve a function in muscular atrophy.

14.
Cytometry B Clin Cytom ; 98(5): 421-428, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32530577

RESUMO

BACKGROUND: Within the hematopoietic compartment, fibromodulin (FMOD) is almost exclusively expressed in chronic lymphocytic leukemia (CLL) lymphocytes. We set out to determine whether FMOD could be of help in diagnosing borderline lymphoproliferative disorders (LPD). METHODS: We established 3 flow cytometry-defined groups (CLL [n = 65], borderline LPD [n = 28], broadly defined as those with CLLflow score between 35 and -20 or discordant CD43 and CLLflow, and non-CLL LPD [n = 40]). FMOD expression levels were determined by standard RT-PCR in whole-blood samples. Patients were included regardless of lymphocyte count but with tumor burden ≥40%. RESULTS: FMOD expression levels distinguished between CLL (median 98.5, interquartile range [IQR] 37.8-195.1) and non-CLL LPD (median 0.012, IQR 0.003-0.033) with a sensitivity and specificity of 1. Most borderline LPDs were CD5/CD23/CD200-positive with no loss of B-cell antigens and negative or partial expression of CD43. 16/22 patients with available cytogenetic analysis showed trisomy 12. In 25/28 (89%) of these patients, FMOD expression levels fell between CLL and non-CLL (median 3.58, IQR 1.06-6.21). DISCUSSION: This study could suggest that borderline LPDs may constitute a distinct group laying in the biological spectrum of chronic leukemic LPDs. Future studies will have to confirm these results with other biological data. Quantification of FMOD can potentially be of help in the diagnosis of phenotypically complex LPDs.


Assuntos
Fibromodulina/sangue , Citometria de Fluxo/métodos , Leucemia Linfocítica Crônica de Células B/sangue , Transtornos Linfoproliferativos/sangue , Idoso , Idoso de 80 Anos ou mais , Citodiagnóstico/métodos , Diagnóstico Diferencial , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Contagem de Linfócitos , Transtornos Linfoproliferativos/patologia , Masculino
15.
Front Pharmacol ; 10: 1308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824307

RESUMO

Emerging evidence suggests that fibromodulin (FMOD), an extracellular matrix protein, is associated with cancer, and yet little is known about the regulation of FMOD expression and its role in cancer metastasis. Aspirin, a classic anti-inflammatory drug, has been indicated to offer anticancer benefits, but its action targets and mechanisms remain obscure. In the present study using cell lines, animal model and database analysis, we show that FMOD is crucial for breast cancer cell migration and invasion (BCCMI) via activation of ERK; expression of FMOD is regulated positively by the Wnt/ß-catenin pathway, wherein the ß-catenin/TCF4/LEF1 complex binds the FMOD promoter to transcribe FMOD. Aspirin inhibits BCCMI by attenuating Wnt/ß-catenin signaling and suppressing FMOD expression via inhibiting deacetylation of ß-catenin by histone deacetylase 6 (HDAC6) leading to ß-catenin phosphorylation and cytoplasmic degradation. Moreover, expression of the transcriptional complex components ß-catenin/TCF4/LEF1 is upregulated by the Wnt/ß-catenin pathway, constituting positive feedback loops that amplify its signal output. Our findings identify a critical role of FMOD in cancer metastasis, reveal a mechanism regulating FMOD transcription and impacting tumor metastasis, uncover action targets and mechanism for the anticancer activity of Aspirin, and expand the understanding of the Wnt/ß-catenin pathway and tumor metastasis, which are valuable for development of cancer therapeutics.

17.
Biomaterials ; 83: 194-206, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774565

RESUMO

Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Proteoglicanas/farmacologia , Animais , Células CHO , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Transplante de Células , Células Cultivadas , Cricetinae , Cricetulus , Meios de Cultura/farmacologia , Fibromodulina , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Camundongos SCID , Minerais/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Crânio/patologia
18.
J Ophthalmic Vis Res ; 7(1): 34-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22737385

RESUMO

PURPOSE: To compare electroretinogram (ERG) characteristics in patients with retinitis pigmentosa (RP) and normal subjects using frequency domain analysis. METHODS: Five basic ERG recordings were performed in normal subjects and patients with a clinical diagnosis of RP according to the ISCEV (International Society of Clinical Electrophysiology of Vision) protocol. Frequency domain analysis was performed by MATLAB software. Different frequency domain parameters were compared between the study groups. RESULTS: Peak frequency (Fmod) of flicker and oscillatory responses in RP patients showed significant (P<0.0001) high pass response as compared to normal controls. Peak frequency (Fmod) of the other responses was not significantly different between the two groups. CONCLUSION: In addition to conventional ERG using time domain methods, frequency domain analysis may be useful for diagnosis of RP. Oscillatory and flicker responses may be analyzed in frequency domain. Fast Fourier transform may reveal two distinct high pass responses (shift to higher frequencies) in Fmod. Time and frequency domain analyses may be performed simultaneously with many modern ERG machines and may therefore be recommended in RP patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa