Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296455

RESUMO

The impact of substituent at phenyl ring of diethyl benzylphosphonate derivatives on cytotoxic activity was studied. The organophosphonates were obtained based on developed palladium-catalyzed α, ß-homodiarylation of vinyl esters protocol. The new synthetic pathway toward 1,2-bis(4-((diethoxyphosphoryl)methyl)phenyl)ethyl acetate was proposed which significantly improves the overall yield of the final product (from 1% to 38%). Several newly synthesized organophosphonates were tested as new potential antimicrobial drugs on model Escherichia coli bacterial strains (K12 and R2-R3). All tested compounds show the highest selectivity and activity against K12 and R2 strains. Preliminary cellular studies using MIC and MBC tests and digestion of Fpg after modification of bacterial DNA suggest that selected benzylphosphonate derivatives may have greater potential as antibacterial agents than typically used antibiotics such as ciprofloxacin, bleomycin and cloxacillin. These compounds are highly specific for pathogenic E. coli strains based on the model strains used and may be engaged in the future as new substitutes for commonly used antibiotics, which is especially important due to the increasing resistance of bacteria to various drugs and antibiotics.


Assuntos
Anti-Infecciosos , Organofosfonatos , Testes de Sensibilidade Microbiana , Escherichia coli/metabolismo , Paládio , DNA Bacteriano , Antibacterianos , Bactérias/metabolismo , Organofosfonatos/farmacologia , Cloxacilina , Ciprofloxacina , Ésteres , Bleomicina
2.
Membranes (Basel) ; 12(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207159

RESUMO

Herein, we present biological studies on 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) obtained via Biginelli reaction catalyzed by NH4Cl under solvent-free conditions. Until now, DHPMs have not been tested for biological activity against pathogenic E. coli strains. We tested 16 newly synthesized DHPMs as antimicrobial agents on model E. coli strains (K12 and R2-R4). Preliminary cellular studies using MIC and MBC tests and digestion of Fpg after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than typically used antibiotics, such as ciprofloxacin (ci), bleomycin (b) and cloxacillin (cl). The described compounds are highly specific for pathogenic E. coli strains based on the model strains used and may be engaged in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the pandemic era.

3.
Materials (Basel) ; 15(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269205

RESUMO

An enzymatic route for phosphorous-carbon- bond formation is developed by discovering new promiscuous activity of lipase. This biocatalytic transformation of phosphorous-carbon- bond addition leads to biologically and pharmacologically relevant α-acyloxy phosphonates with methyl group in α-position. A series of target compounds were synthesized with yields ranging from 54% to 83% by enzymatic reaction with Candida cylindracea (CcL) lipase via Markovnikov addition of H-phosphites to vinyl esters. We carefully analyzed the best conditions for the given reaction such as the type of enzyme, temperature, and type of solvent. The developed protocol is applicable to a range of H-phosphites and vinyl esters significantly simplifying the preparation of synthetically challenging α-pivaloyloxy phosphonates. Further, the obtained compounds were validated as new potential antimicrobial drugs with characteristic E. coli bacterial strains and DNA modification recognized by the Fpg protein, N-methyl purine glycosylases as new substrates. The impact of the methyl group located in the α-position of the studied α-acyloxy phosphonates on the antimicrobial activity was demonstrated. The pivotal role of this group on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.

4.
Materials (Basel) ; 14(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671509

RESUMO

An initial study of 1,2-diarylethanols derivatives as new potential antibacterial drugs candidates was conducted. Particular emphasis was placed on the selection of the structure of 1,2-diarylethanols with the highest biological activity of lipopolysaccharides (LPS) in the model strains of Escherichia coli K12 (without LPS in its structure) and R2-R4 (with different lengths of LPS in its structure). In the presented studies, based on the conducted minimum inhibitory concentration (MIC) and MBC tests, it was demonstrated that the antibacterial (toxic) effect of 1,2-diarylethanols depends on their structure and the length of LPS bacteria in the membrane of specific strains. Moreover, the oxidative damage of bacterial DNA isolated from bacteria after modification with newly synthesized compounds after application of the repair enzyme Fpg glycosylases was analysed. The analysed damage values were compared with modification with appropriate antibiotics; bacterial DNA after the use of kanamycin, streptomycin, ciprofloxacin, bleomycin and cloxicillin. The presented research clearly shows that 1,2-diarylethanol derivatives can be used as potential candidates for substitutes for new drugs, e.g., the analysed antibiotics. Their chemical and biological activity is related to two aromatic groups and the corresponding chemical groups in the structure of the substituent. The observed results are particularly important in the case of increasing bacterial resistance to various drugs and antibiotics, especially in nosocomial infections and neoplasms, and in the era of pandemics caused by microorganisms.

5.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947169

RESUMO

The biological research on newly synthesized amidoximes, Boc-protected amidoximes and Boc-derived amidines, obtained by a reduction of the parent amidoximes is reported, herein. Due to the presence of a free amino group in both amidines and amidoximes, these compounds can undergo various chemical reactions such as N-alkylation and N-acylation. One such reaction is Boc-protection, often used in organic synthesis to protect the amino and imino groups. Until now, Boc-protected amidoximes have not been tested for biological activity. Amidoxime derivatives were tested on bacterial E. coli strains. Initial cellular studies tests and digestion with Fpg after the modification of bacterial DNA, suggest that these compounds may have greater potential as antibacterial agents compared to antibiotics such as ciprofloxacin (ci), bleomycin (b) and cloxacillin (cl). The described compounds are highly specific for pathogenic E. coli strains on the basis of the model strains used and may be used in the future as new substitutes for commonly used antibiotics in clinical and hospital infections in the pandemic era.

6.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640121

RESUMO

This work presents the successful synthesis of a library of novel peptidomimetics via Ugi multicomponent reaction. Most of these peptidomimetics contain differently substituted aminocoumarin; 7-amino-4-methylcoumarin and 7-amino-4-(trifluoromethyl) coumarin. Inspired by the biological properties of coumarin derivatives and peptidomimetics, we proposed the synthesis of coumarin incorporated peptidomimetics. We studied the potential of synthesized compounds as antimicrobial drugs on model E. coli bacterial strains (k12 and R2-R4). To highlight the importance of coumarin in antimicrobial resistance, we also synthesized the structurally similar peptidomimetics, using benzylamine. Preliminary cellular studies suggest that the compounds with coumarin derivatives have more potential as antimicrobial agents compared to the compounds without coumarin. We also analyzed the effect of aldehyde, free acid group and ester group on the course of their antimicrobial properties.

7.
Materials (Basel) ; 13(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486298

RESUMO

Coumarins are natural compounds that were detected in 80 species of plants. They have numerous applications including the medical, food, tobacco, perfumery, and spirit industries. They show anti-swelling and diastolic effects. However, excess consumption of coumarins may adversely affect our health, because they are easily absorbed from the intestines into the lymph and blood, causing cirrhosis of the liver. Peptidomimetics are molecules whose structure and function are similar to those of peptides. They are an important group of compounds with biological, microbiological, anti-inflammatory, and anti-cancer properties. Therefore, studies on new peptidomimetics, which load the effect of native peptides, whose half-life in the body is much longer due to structural modifications, are extremely important. A preliminary study of coumarin analogues and its derivatives as new potential antimicrobial drugs containing carboxylic acid or ester was performed to determine their basic structure related to their biological features against various types of Gram-stained bacteria by lipopolysaccharide (LPS). We hypothesized that the toxicity (antibacterial activity) of coumarin derivatives is dependent on the of LPS in bacteria and nature and position of the substituent which may be carboxylic acid, hydroxyl groups, or esters. In order to verify this hypothesis, we used K12 (smooth) and R1-R4 (rough) Escherichia coli strains which are characterized by differences in the type of LPS, especially in the O-antigen region, the outermost LPS layer. In our work, we synthesized 17 peptidomimetics containing a coumarin scaffold and checked their influence on K12 and R1-R4 E. coli strains possessing smooth and rough LPS. We also measured the damage of plasmid DNA caused by target compounds. The results of our studies clearly support the conclusion that coumarin peptidomimetics are antagonistic compounds to many of the currently used antibiotics. The high biological activity of the selected coumarin peptidomimetic was associated with identification of the so-called magic methyl groups, which substantially change the biochemical properties of target compounds. Investigating the effects of these compounds is particularly important in the era of increasingly common resistance in bacteria.

8.
Mutat Res ; 769: 42-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25771724

RESUMO

The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells.


Assuntos
Ensaio Cometa/métodos , Reparo do DNA , Mutagênese , Linfócitos T/citologia , Linfócitos T/metabolismo , 4-Nitroquinolina-1-Óxido/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Bromatos/toxicidade , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/imunologia , Compostos de Epóxi/toxicidade , Humanos , Separação Imunomagnética , Masculino , Metanossulfonato de Metila/toxicidade , Mutagênese/efeitos dos fármacos , Mutagênese/imunologia , Testes de Mutagenicidade , Mutagênicos/toxicidade , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa