Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Hum Reprod ; 39(3): 504-508, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224259

RESUMO

Genetic causes account for 10-15% of male factor infertility, making the genetic investigation an essential and useful tool, mainly in azoospermic and severely oligozoospermic men. In these patients, the most frequent findings are chromosomal abnormalities and Y chromosome long arm microdeletions, which cause a primary severe spermatogenic impairment with classically increased levels of FSH. On the other hand, polymorphisms in the FSH receptor (FSHR) and FSH beta chain (FSHB) genes have been associated with different FSH plasma levels, due to variations in the receptor sensitivity (FSHR) or in the production of FSH from the pituitary gland (FSHB). Here, we describe an unusual patient with a combined genetic alteration (classic AZFc deletion of the Y chromosome and TT homozygosity for the -211G>T polymorphism in the FSHB gene (rs10835638)), presenting with cryptozoospermia, severe hypospermatogenesis, and normal LH and testosterone plasma concentrations, but low FSH levels. The patient partially benefitted from treatment with FSH (150 IU three times/week for 6 months) which allowed him to cryopreserve enough motile spermatozoa to be used for intracytoplasmic sperm injection. According to our knowledge, this is the first report of an infertile man with AZFc microdeletion with low FSH plasma concentrations related to homozygosity for the -211G>T polymorphism in the FSHB gene.


Assuntos
Deleção Cromossômica , Infertilidade Masculina , Oligospermia , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Sêmen , Infertilidade Masculina/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Oligospermia/genética , Cromossomos Humanos Y/genética
2.
Neuroendocrinology ; 113(10): 1059-1075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37544299

RESUMO

INTRODUCTION: Sex steroid hormone fluctuations may underlie both reproductive disorders and sex differences in lifetime depression prevalence. Previous studies report high comorbidity among reproductive disorders and between reproductive disorders and depression. This study sought to assess the multivariate genetic architecture of reproductive disorders and their loading onto a common genetic factor and investigated whether this latent factor shares a common genetic architecture with female depression, including perinatal depression (PND). METHOD: Using UK Biobank and FinnGen data, genome-wide association meta-analyses were conducted for nine reproductive disorders, and genetic correlation between disorders was estimated. Genomic Structural Equation Modelling identified a latent genetic factor underlying disorders, accounting for their significant genetic correlations. SNPs significantly associated with both latent factor and depression were identified. RESULTS: Excellent model fit existed between a latent factor underlying five reproductive disorders (χ2 (5) = 6.4; AIC = 26.4; CFI = 1.00; SRMR = 0.03) with high standardised loadings for menorrhagia (0.96, SE = 0.05); ovarian cysts (0.94, SE = 0.05); endometriosis (0.83, SE = 0.05); menopausal symptoms (0.77, SE = 0.10); and uterine fibroids (0.65, SE = 0.05). This latent factor was genetically correlated with PND (rG = 0.37, SE = 0.15, p = 1.4e-03), depression in females only (rG = 0.48, SE = 0.06, p = 7.2e-11), and depression in both males and females (MD) (rG = 0.35, SE = 0.03, p = 1.8e-30), with its top locus associated with FSHB/ARL14EP (rs11031006; p = 9.1e-33). SNPs intronic to ESR1, significantly associated with the latent factor, were also associated with PND, female depression, and MD. CONCLUSION: A common genetic factor, correlated with depression, underlies risk of reproductive disorders, with implications for aetiology and treatment. Genetic variation in ESR1 is associated with reproductive disorders and depression, highlighting the importance of oestrogen signalling for both reproductive and mental health.


Assuntos
Depressão , Estudo de Associação Genômica Ampla , Gravidez , Humanos , Masculino , Feminino , Reprodução , Fatores de Risco , Comorbidade
3.
Andrologia ; 54(5): e14383, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35124809

RESUMO

Genetic variants affecting the interaction of FSH-FSHR may negatively affect the male reproductive potential. The aim of this case-control study was to evaluate FSHB c.-211G>T and FSHR c.2039A>G variants in a cohort of infertile men from Central Black Sea Region in Turkey. One hundred and nine infertile men and 50 proven fertile controls were enrolled in the study. Genotyping was assessed by RFLP. The genotype frequencies of FSHB -211G>T and FSHR 2039A>G showed significant variation between infertile and fertile groups (χ2 , p = 0.046, GG vs. GT+TT, and p = 0.008, AA vs. AG+GG). FSHB -211GG was found to be higher in patients with OAT compared to fertile controls (82.3% vs. 64.0%, χ2 , p = 0.028). The distribution of FSHR 2039A>G alleles was different between infertile and fertile men (χ2 , p = 0.005, total infertile vs. fertile groups, p = 0.019, OAT vs. NOA vs. fertile groups). Further analysis showed that the frequencies of FSHR 2039AA wild-type genotype were higher in the oligoasthenoteratozoospermic and non-obstructive azoospermic groups compared with the controls (χ2 , 39.3% vs. 17.0%, p = 0.012, and 37.5% vs. 17.0%, p = 0.025 respectively). Our results showed wild-types of FSHB -211G>T and FSHR 2039A>G variants may cause susceptibility to male infertility in the Central Black Sea Region of Turkey.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores do FSH , Mar Negro , Estudos de Casos e Controles , Subunidade beta do Hormônio Folículoestimulante/genética , Genótipo , Humanos , Masculino , Receptores do FSH/genética , Turquia/epidemiologia
4.
Hum Reprod ; 36(5): 1376-1382, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33704441

RESUMO

STUDY QUESTION: Does pituitary response to a GnRH stimulation test differ according to the different FSHB-211 G/T genotypes? SUMMARY ANSWER: The promoter polymorphism FSHB-211 G > T affects the pituitary response to exogenous GnRH stimulation by reducing FSH and increasing LH outputs. WHAT IS KNOWN ALREADY: The FSHB-211 G > T single nucleotide polymorphism (SNP) is known to affect pituitary FSH output by impairing the transcriptional activity of FSHB. STUDY DESIGN, SIZE, DURATION: This was a cross-sectional, retrospective study on 67 male subjects (mean age: 24.6 ± 10.3 years) undergoing a GnRH stimulation test for diagnostic purposes in cases of secondary hypogonadism. PARTICIPANTS/MATERIALS, SETTING, METHODS: A GnRH stimulation test was performed by administering an i.v. bolus of 100 µg of the GnRH-analogue gonadorelin acetate to all patients, with blood samples drawn from the cubital vein immediately prior to injection (T0) and 30 (T1) and 45 minutes (T2) after. Clinical and genetic data were retrieved from a computerized database. Linear longitudinal mixed-effect models were used to assess the effects of SNP genotype on FSH and LH levels over time via additive and recessive models. MAIN RESULTS AND THE ROLE OF CHANCE: An overall marked increase in serum FSH and LH following administration i.v. of 100 µg of an LHRH-analogue was found (P < 0.0001 for linear trend, both models). Peak levels of LH were significantly higher in TT carriers than in GT and GG carriers (P = 0.012); no significant between-groups difference was found concerning stimulated FSH levels. In both the additive and recessive model, the main effect of T allele(s) did not reach statistical significance concerning FSH levels (P = 0.9502 and P = 0.8576, respectively), yet interaction effects over time demonstrated an attenuated response in T-allele carriers compared to the GG-allele carriers (P = 0.0219 and P = 0.0276). Main and interaction effects for LH were significant in both the additive (P = 0.0022 and P = 0.0013, respectively) and recessive model (P = 0.0025 and P = 0.0016, respectively). LIMITATIONS, REASONS FOR CAUTION: Given the retrospective nature of the study and the small number of TT carriers, results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The FSHB c.-211G>T polymorphism might result in an impaired response to endogenous, as well as exogenous, GnRH stimulation. This finding might contribute to the clinical phenotype of reduced testicular volume and sperm count for patients carrying one or two T alleles. STUDY FUNDING/COMPETING INTEREST(S): Parts of the study were supported by the German Research Foundation (CRU326 Male Germ Cells). On behalf of all authors, the corresponding author states that there is no conflict of interest. TRIAL REGISTRATION NUMBER: NA.


Assuntos
Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Adolescente , Adulto , Alelos , Estudos Transversais , Hormônio Foliculoestimulante/genética , Genótipo , Humanos , Masculino , Estudos Retrospectivos , Adulto Jovem
5.
J Reprod Dev ; 67(3): 217-221, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33840679

RESUMO

Functional relationship between nuclear receptor subfamily 4 group A member 3 (Nr4a3) and annexin A5 (Anxa5), which are two gonadotropin-releasing hormone (GnRH)-inducible genes, has been established while evaluating pituitary gonadotropes in relation to follicle-stimulating hormone beta (Fshb) expression. However, the physiological variations that arise due to the differential expression of these genes in the pituitary gland during rat estrous cycle remain unknown. This study aimed to evaluate the Nr4a3 and Anxa5 mRNA expression during the estrous cycle in rats in comparison with the expression of the gonadotropin subunit genes, luteinizing hormone beta (Lhb) and Fshb. Nr4a3 mRNA expression showed a single peak at 1400 h of proestrus during the 4-d estrous cycle. Anxa5 mRNA level was elevated along with increased Fshb mRNA expression after the decline of Nr4a3 mRNA until 2300 h. Lhb mRNA expression levels were not significantly changed during the estrous cycle. Notably, addition of a GnRH antagonist at 1100 h completely eradicated luteinizing hormone secretion at 1400 h and 1700 h of proestrus, and significantly reduced the Nr4a3 mRNA expression level at both the time points. These results suggest that GnRH is, at least partly, responsible for the increase in pituitary Nr4a3, and that the interaction between NR4A3 and ANXA5 is required to regulate Fshb expression during the preovulatory gonadotropin surge.


Assuntos
Anexina A5/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ciclo Estral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Hipófise/metabolismo , Animais , Anexina A5/genética , Proteínas de Ligação a DNA/genética , Ciclo Estral/genética , Feminino , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/farmacologia , Antagonistas de Hormônios/farmacologia , Hormônio Luteinizante/sangue , Proteínas do Tecido Nervoso/genética , Hipófise/efeitos dos fármacos , Ratos , Receptores do FSH/genética , Receptores do FSH/metabolismo
6.
Biol Reprod ; 101(4): 800-812, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31317174

RESUMO

Nr5a1 (Sf-1) up-regulates lhb expression across vertebrates; however, its regulatory roles on fshb remain to be defined. Moreover, the involvement of Nr5a2 in the regulation of gonadotropin expression is not clear either. In the present study, the involvement of Nr5a1b (a homologue of Nr5a1) and Nr5a2 in the regulation of lhb and fshb expression in the orange-spotted grouper was examined. Dual fluorescent immunohistochemistry using homologous antisera showed that in the pituitary of orange-spotted groupers, Lh cells contain both immunoreactive Nr5a1b and Nr5a2 signals, whereas Fsh cells contain neither of them. In LßT2 cells, Nr5a1b up-regulated basal activities of lhb and fshb promoters possibly via Nr5a sites, and synergistically (on lhb promoter) or additively (on fshb promoter) with forskolin. Surprisingly, Nr5a2 inhibited basal activities of lhb promoter possibly via Nr5a sites and attenuated the stimulatory effects of both forskolin and Nr5a1b. In contrast, Nr5a2 had no effects on fshb promoter. Chromatin immunoprecipitation analysis showed that both Nr5a1b and Nr5a2 bound to lhb promoter, but not fshb promoter in the pituitary of the orange-spotted grouper. The abundance of Nr5a1b bound to lhb promoter was significantly higher at the vitellogenic stage than the pre-vitellogenic stage, whereas that of Nr5a2 exhibited an opposite trend. Taken together, data of the present study demonstrated antagonistic effects of Nr5a1b and Nr5a2 on lhb transcription in the orange-spotted grouper and revealed novel regulatory mechanisms of differential expression of lhb and fshb genes through Nr5a homologues in vertebrates.


Assuntos
Bass/genética , Hormônio Luteinizante Subunidade beta/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Fator Esteroidogênico 1/fisiologia , Ativação Transcricional/genética , Animais , Bass/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Regulação para Baixo/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Camundongos , Regulação para Cima/genética
7.
BMC Med Genet ; 18(1): 81, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764642

RESUMO

BACKGROUND: Male infertility is a complex disorder caused by genetic, developmental, endocrine, or environmental factors as well as unknown etiology. Polymorphisms in the follicle stimulating hormone beta subunit (FSHB) (rs10835638, c.-211G > T) and follicle stimulating hormone receptor (FSHR) (rs1394205, c.-29G > A; rs6165, c.919A > G; rs6166, c.2039 A > G) genes might disturb normal spermatogenesis and affect male reproductive ability. METHODS: To further ascertain the aforementioned effects, we conducted a case-control study of 255 infertile men and 340 fertile controls from South China using the Mass ARRAY method, which was analyzed by the t-tests and logistic regression analysis using SPSS for Windows 14.0. In addition, a meta-analysis was performed by combining our results with previous reports using STATA 12.0. RESULTS: In the FSHB or FSHR gene single nucleotide polymorphism (SNP) evaluation, no statistically-significant difference was found in the frequency of allelic variants or in genotype distribution between cases and controls. However, a significant association for the comparison of GAA (P: 0.022, OR: 0.63, 95%CI: 0.43-0.94) was seen between the oligozoospermia and controls in haplotype analysis of rs1394205/rs6165/rs6166. In the meta-analysis, rs6165G allele and rs6166 GG genotype were associated with increased risk of the male infertility. CONCLUSIONS: This study suggested that FSHR GAA haplotype would exert protective effects against male sterility, which indicated that the combination of three SNP genotypes of FSHR was predicted to have a much stronger impact than either one alone. Then in the meta-analysis, a significant association was seen between FSHR rs6165, rs6166 polymorphisms and male infertility. In terms of male infertility with multifactorial etiology, further studies with larger sample sizes and different ethnic backgrounds or other risk factors are warranted to clarify the potential role of FSHB and FSHR polymorphisms in the pathogenesis of male infertility.


Assuntos
Proteínas de Transporte/genética , Glicopeptídeos/genética , Infertilidade Masculina/genética , Polimorfismo de Nucleotídeo Único , Receptores do FSH/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Masculino
8.
Hum Reprod ; 31(9): 1960-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27329968

RESUMO

STUDY QUESTION: Does the sperm DNA fragmentation index (DFI) improve depending on the FSH receptor (FSHR) genotype as assessed by the nonsynonymous polymorphisms rs6166 (p.N680S) after 3 months of recombinant FSH treatment in men with idiopathic infertility? SUMMARY ANSWER: FSH treatment significantly improves sperm DFI only in idiopathic infertile men with the p.N680S homozygous N FSHR. WHAT IS KNOWN ALREADY: FSH, fundamental for spermatogenesis, is empirically used to treat male idiopathic infertility and several studies suggest that DFI could be a candidate predictor of response to FSH treatment, in terms of probability to conceive. Furthermore, it is known that the FSHR single nucleotide polymorphism (SNP) rs6166 (p.N680S) influences ovarian response in women and testicular volume in men. STUDY DESIGN, SIZE AND DURATION: A multicenter, longitudinal, prospective, open-label, two-arm clinical trial was performed. Subjects enrolled were idiopathic infertile men who received 150 IU recombinant human FSH s.c. every other day for 12 weeks and were followed-up for a further 12 weeks after FSH withdrawal. Patients were evaluated at baseline, at the end of treatment and at the end of follow-up. PARTICIPANTS/MATERIALS, SETTING, METHODS: Eighty-nine men with idiopathic infertility carrier of the FSHR p.N680S homozygous N or S genotype, FSH ≤ 8 IU/l and DFI >15%, were enrolled. A total of 66 patients had DFI analysis completed on at least two visits. DFI was evaluated in one laboratory by TUNEL/PI (propidium iodide) assay coupled to flow cytometry, resolving two different fractions of sperm, namely the 'brighter' and 'dimmer' sperm DFI fractions. MAIN RESULTS AND THE ROLE OF CHANCE: Thirty-eight men (57.6%) were carriers of the p.N680S homozygous N and 28 (42.4%) of the homozygous S FSHR. Sperm concentration/number was highly heterogeneous and both groups included men ranging from severe oligozoospermia to normozoospermia. Total DFI was significantly lower at the end of the study in homozygous carriers of the p.N680S N versus p.N680S S allele (P = 0.008). Total DFI decreased significantly from baseline to the end of the study (P = 0.021) only in carriers of the p.N680S homozygous N polymorphism, and this decrease involved the sperm population containing vital sperm (i.e. brighter sperm) (P = 0.008). The dimmer sperm DFI fraction, including only nonvital sperm, was significantly larger in p.N680S S homozygous patients than in homozygous N men (P = 0.018). Total DFI was inversely related to total sperm number (P = 0.020) and progressive sperm motility (P = 0.014). When patients were further stratified according to sperm concentration (normoozospermic versus oligozoospermic) or -211G>T polymorphism in the FSHB gene (rs10835638) (homozygous G versus others), the significant improvement of sperm DFI in FSHR p.N680S homozygous N men was independent of sperm concentration and associated with the homozygous FSHB -211G>T homozygous G genotype. LIMITATIONS, REASONS FOR CAUTION: The statistical power of the study is 86.9% with alpha error 0.05. This is the first pharmacogenetic study suggesting that FSH treatment induces a significant improvement of total DFI in men carriers of the p.N680S homozygous N FSHR; however, the results need to be confirmed in larger studies using a personalized FSH dosage and treatment duration. WIDER IMPLICATIONS OF THE FINDINGS: The evaluation of sperm DFI as a surrogate marker of sperm quality, and of the FSHR SNP rs6166 (p.N680S), might be useful to predict the response to FSH treatment in men with idiopathic infertility. STUDY FUNDING/COMPETING INTERESTS: The study was supported by an unrestricted grant to M.S. and H.M.B. from Merck Serono that provided the drug used in the study. MS received additional grants from Merck Serono and IBSA as well as honoraria from Merck Serono. The remaining authors declare that no conflicts of interest are present. TRIAL REGISTRATION NUMBER: EudraCT number 2010-020240-35.


Assuntos
Fragmentação do DNA/efeitos dos fármacos , Hormônio Foliculoestimulante Humano/farmacologia , Infertilidade Masculina/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Receptores do FSH/genética , Adulto , Alelos , Hormônio Foliculoestimulante Humano/uso terapêutico , Genótipo , Humanos , Infertilidade Masculina/genética , Masculino , Testes Farmacogenômicos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatogênese/genética , Espermatozoides/efeitos dos fármacos , Resultado do Tratamento
9.
Biol Reprod ; 93(1): 21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26063874

RESUMO

The most obvious functional differences between mammalian males and females are related to the control of reproductive physiology and include patterns of GnRH and gonadotropin release, the timing of puberty, sexual and social behavior, and the regulation of food intake and body weight. Using the rat as the best-studied mammalian model for maturation, we examined the expression of major anterior pituitary genes in five secretory cell types of developing males and females. Corticotrophs show comparable Pomc profiles in both sexes, with the highest expression occurring during the infantile period. Somatotrophs and lactotrophs also exhibit no difference in Gh1 and Prl profiles during embryonic to juvenile age but show the amplification of Prl expression in females and Gh1 expression in males during peripubertal and postpubertal ages. Gonadotrophs exhibit highly synchronized Lhb, Fshb, Cga, and Gnrhr expression in both sexes, but the peak of expression occurs during the infantile period in females and at the end of the juvenile period in males. Thyrotrophs also show different developmental Tshb profiles, which are synchronized with the expression of gonadotroph genes in males but not in females. These results indicate the lack of influence of sex on Pomc expression and the presence of two patterns of sexual dimorphism in the expression of other pituitary genes: a time shift in the peak expression during postnatal development, most likely reflecting the perinatal sex-specific brain differentiation, and modulation of the amplitude of expression during late development, which is secondary to the establishment of the hypothalamic-pituitary-gonadal and -thyroid axes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Hipófise/metabolismo , Caracteres Sexuais , Maturidade Sexual/fisiologia , Animais , Feminino , Gonadotrofos/citologia , Gonadotrofos/metabolismo , Masculino , Hipófise/citologia , Hipófise/crescimento & desenvolvimento , Ratos
10.
Life (Basel) ; 14(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39202711

RESUMO

Follicle-stimulating hormone (FSH) administration is applied in the management of subjects affected by hypogonadotropic hypogonadism. Whilst this application is widely recognized and established alone or in combination with human chorionic gonadotropin (hCG), a similar strategy is empirically advocated in idiopathic male factor infertility (MFI). In this setting, FSH therapy has been used to increase sperm quantity, quality, and pregnancy rate when FSH plasma concentrations are below 8 IU/L and when the seminal tract is not obstructed. In the literature, several studies suggested that giving FSH to patients with idiopathic MFI increases sperm count and motility, raising the overall pregnancy rate. However, this efficacy seems to be limited, and about 10-18 men should be treated to achieve one pregnancy. Thus, several papers suggest the need to move from a replacement approach to an overstimulating approach in the management of FSH therapy in idiopathic MFI. To this aim, it is imperative to determine some pharmacologic markers of FSH efficacy. Furthermore, it should be useful in clinical practice to distinguish, before starting the treatment, among patients who might respond or not to FSH treatment. Indeed, previous studies suggest that infertile men who have normal levels of gonadotropins in plasma might not respond to FSH treatment and about 50% of patients might be defined as "non-responders". For these reasons, identifying predictive markers of FSH action in spermatogenesis and clinical markers of response to FSH treatment is a fascinating area of study that might lead to new developments with the aim of achieving personalization of the treatment of male infertility. From this perspective, seminal parameters (i.e., spermatid count), testicular cytology, genetic assessment, and miRNA or protein markers in the future might be used to create a tailored FSH therapy plan. The personalization of FSH treatment is mandatory to minimize side effects, to avoid lost time with ineffective treatments, and to improve the efficacy, predicting the most efficient dose and the duration of the treatment. This narrative review's objective is to discuss the role of the different putative factors which have been proposed to predict the response to FSH treatment in idiopathic infertile men.

11.
Gen Comp Endocrinol ; 191: 247-58, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23856539

RESUMO

In female Atlantic salmon kept at normal light conditions, pituitary follicle-stimulating hormone beta (fshb) transcript levels were transiently elevated one year before spawning, re-increased in February, and remained high during spawning in November and in post-ovulatory fish in December. The first increase in plasma 17b-estradiol (E2), testosterone (T) and gonadosomatic index (GSI) was recorded in January; E2 rose up to one month prior to ovulation, while T and GSI kept increasing until ovulation. Pituitary luteinizing hormone beta (lhb) transcript levels peaked at the time of ovulation. Except for transient changes before and after ovulation, ovarian follicle stimulating hormone receptor (fshr) transcript amounts were relatively stable at a high level. By contrast, luteinizing hormone receptor (lhcgr) transcript levels started out low and increased in parallel to GSI and plasma E2 levels. Exposure to continuous light (LL) induced a bimodal response where maturation was accelerated or arrested. The LL-arrested females showed previtellogenic oil droplet stage follicles or primary yolk follicles only, and fshb and E2 plasma levels collapsed while fshr increased. The LL-accelerated females showed elevated lhb transcript levels and slightly elevated E2 levels during early vitellogenesis, and significantly elevated lhcgr E2 and GSI levels in late vitellogenesis. We conclude that Fsh-dependent signaling stimulates recruitment into and the sustained development through vitellogenesis. Up-regulation of lhcgr gene expression during vitellogenesis may reflect an estrogenic effect, while elevated fshr gene expression following ovulation or during LL-induced arrestment may be associated with ovarian tissue remodeling processes.


Assuntos
Gonadotropinas Hipofisárias/metabolismo , Ovário/metabolismo , Fotoperíodo , Receptores da Gonadotropina/metabolismo , Salmo salar/metabolismo , Salmo salar/fisiologia , Estações do Ano , Animais , Feminino , Ovário/fisiologia , Reprodução/fisiologia
12.
Endocrinology ; 164(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477898

RESUMO

The anterior pituitary controls key biological processes, including growth, metabolism, reproduction, and stress responses through distinct cell types that each secrete specific hormones. The anterior pituitary cells show a remarkable level of cell type plasticity that mediates the shifts in hormone-producing cell populations that are required to meet organismal needs. The molecular mechanisms underlying pituitary cell plasticity are not well understood. Recent work has implicated the pituitary stem cell populations and specifically, the mRNA binding proteins of the Musashi family in control of pituitary cell type identity. In this study we have identified the target mRNAs that mediate Musashi function in the adult mouse pituitary and demonstrate the requirement for Musashi function in vivo. Using Musashi RNA immunoprecipitation, we identify a cohort of 1184 mRNAs that show specific Musashi binding. Identified Musashi targets include the Gnrhr mRNA, which encodes the gonadotropin-releasing hormone receptor (GnRHR), and the Fshb mRNA, encoding follicle-stimulating hormone (FSH). Reporter assays reveal that Musashi functions to exert repression of translation of the Fshb mRNA, in addition to the previously observed repression of the Gnrhr mRNA. Importantly, mice engineered to lack Musashi in gonadotropes demonstrate a failure to repress translation of the endogenous Gnrhr and Fshb mRNAs during the estrous cycle and display a significant heterogeneity in litter sizes. The range of identified target mRNAs suggests that, in addition to these key gonadotrope proteins, Musashi may exert broad regulatory control over the pituitary proteome in a cell type-specific manner.


Assuntos
Gonadotrofos , Camundongos , Animais , Gonadotrofos/metabolismo , Hormônio Foliculoestimulante/metabolismo , Proteínas de Transporte/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Andrology ; 11(7): 1386-1397, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36908159

RESUMO

BACKGROUND: There is a strong within-subject alteration of semen parameters in men with infertility. However, it remains unknown in which subgroup variations are likely to occur and which semen parameters are affected. OBJECTIVE: To evaluate parameters associated with spontaneous alterations in semen analysis. PATIENTS AND METHODS: We retrospectively selected 3456 men with infertility without known causes affecting spermatogenesis or sperm output for analysis of repeated ejaculate samples. Exclusion criteria comprised sperm concentration <1 million/mL, abnormal follicle-stimulating hormone or low testosterone, and low bitesticular volume (<10 mL). Grouped linear two-level nested mixed-effect models were applied. The analyzed parameters included abstinence time, bitesticular volume, age, accessory gland markers, follicle-stimulating hormone, and FSHB c.-211 variants. RESULTS: Groups include A (n = 397): ≥1.0 to <5.0 million/mL, B (n = 708): ≥5.0 to <15.0 million/mL, and C (n = 2351): ≥15.0 million/mL. Groups A, B, and C: changes in ejaculate volume were associated with alterations in total sperm count and motility (p < 0.003). Changes were, controlled for abstinence time (p < 0.001), related to α-glucosidase, fructose, or zinc (p = 0.005-0.02). Group A + B: fluctuations in follicle-stimulating hormone level influenced sperm concentration/count (p = 0.004-0.02), albeit only in men with FSHB c.-211 GG (p = 0.007-0.02). T-allele carriers did not show changes in follicle-stimulating hormone levels (p > 0.1). Group B: age <50 years (p = 0.007-0.01) and normal bitesticular volume (p = 0.008-0.02) were associated with spontaneous increases in sperm concentration, count, and motility. CONCLUSION: Semen parameters exhibit intra-individual alterations associated with organic, hormonal, and genetic variables. Changes are pronounced in younger men with normal bitesticular volume and oligozoospermia to almost normozoospermia. The effect is modulated by abstinence time, accessory gland function, and fluctuations in follicle-stimulating hormone level, which is bound to FSHB c.-211G>T variant. Judgment of semen analysis should be based on two semen samples, with abstinence times between 4 and 5 days. As a future perspective, it might be investigated whether younger men with normal bitesticular volume who are unable to elicit increases in serum follicle-stimulating hormone (FSHB c.-211 genotype of GT/TT) benefit from improving accessory gland function and increasing follicle-stimulating hormone.


Assuntos
Oligospermia , Sêmen , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Polimorfismo de Nucleotídeo Único , Hormônio Foliculoestimulante , Hormônio Foliculoestimulante Humano , Contagem de Espermatozoides , Testosterona , Motilidade dos Espermatozoides
14.
Andrology ; 9(2): 618-631, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236519

RESUMO

BACKGROUND: Spermatogenesis depends on stimulation by follicle-stimulating hormone (FSH) which binds to FSH receptors (FSHR) on testicular Sertoli cells. Three FSH-related single-nucleotide polymorphisms (SNPs), FSHB -211G>T (rs10835638), FSHR -29G>A (rs1394205) and FSHR 2039A>G (rs6166) affect FSH action, and have been suggested to affect testicular function, but the evidence is uncertain. OBJECTIVE: To describe the associations between the three SNPs and testicular function in a large and well-characterised cohort of men from the general population. MATERIALS AND METHODS: A cross-sectional study of 2020 Danish men unselected regarding testicular function. Outcome variables were semen parameters, reproductive hormones and testis size. Genotyping was done by competitive allele-specific quantitative PCR. Differences in genotype frequencies were tested by chi-square test and associations between genotypes and outcomes were assessed by multivariate linear regressions. RESULTS: The SNPs affected serum FSH; carriers of the variant affecting FSH secretion (FSHB -211G>T) had lower FSH levels while carriers of variants affecting receptor expression (FSHR -29G>A) and receptor sensitivity (FSHR 2039A>G) had higher FSH levels. Carriers of FSHB -211G>T had lower calculated free testosterone/LH ratio. Although both FSHB -211G>T and FSHR 2039A>G were associated with smaller testis size, no clear association was detected in relation to any semen parameters, except a lower total number of morphologically normal spermatozoa in the heterozygous carriers of the FSHB -211G>T DISCUSSION AND CONCLUSION: The studied polymorphisms have only minor modulating influence on testis size and function in healthy men. We detected subtle effects of the three SNPs on FSH levels, but also effects of FSHB -211G>T on calculated free testosterone/LH ratio, compatible with altered Leydig cell function. Thus, the role of these FSH-related polymorphisms is complex and modest in men with normal testicular function, but the possible importance of FSH polymorphisms in men with impaired testicular function should be evaluated in future studies in more detail.


Assuntos
Hormônio Foliculoestimulante Humano/sangue , Subunidade beta do Hormônio Folículoestimulante/genética , Receptores do FSH/genética , Análise do Sêmen , Testículo/anatomia & histologia , Adolescente , Alelos , Dinamarca , Frequência do Gene , Genótipo , Humanos , Masculino , Tamanho do Órgão/genética , Polimorfismo de Nucleotídeo Único , Adulto Jovem
15.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009549

RESUMO

The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone, signal the gonads to regulate male and female fertility. FSH is critical for female fertility as it regulates oocyte maturation, ovulation, and hormone synthesis. Multiple genome-wide association studies (GWAS) link a 130 Kb locus at 11p14.1, which encompasses the FSH beta-subunit (FSHB) gene, with fertility-related traits that include polycystic ovary syndrome, age of natural menopause, and dizygotic twinning. The most statistically significant single nucleotide polymorphism from several GWAS studies (rs11031006) resides within a highly conserved 450 bp region 26 Kb upstream of the human FSHB gene. Given that sequence conservation suggests an important biological function, we hypothesized that the region could regulate FSHB transcription. In luciferase assays, the conserved region enhanced FSHB transcription and gel shifts identified a binding site for Steroidogenic factor 1 (SF1) contributing to its function. Analysis of mouse pituitary single-cell ATAC-seq demonstrated open chromatin at the conserved region exclusive to a gonadotrope cell-type cluster. Additionally, enhancer-associated histone markers were identified by immunoprecipitation of chromatin from mouse whole pituitary and an immortalized mouse gonadotrope-derived LßT2 cell line at the conserved region. Furthermore, we found that the rs11031006 minor allele upregulated FSHB transcription via increased SF1 binding to the enhancer. All together, these results identify a novel upstream regulator of FSHB transcription and indicate that rs11031006 can modulate FSH levels.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/metabolismo , Infertilidade Feminina/genética , Animais , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Polimorfismo de Nucleotídeo Único
16.
Front Endocrinol (Lausanne) ; 12: 760616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659133

RESUMO

Background: Single nucleotide variants (SNVs) FSHB:c.-211G>T, FSHR:c.919G>A, and FSHR:c.2039G>A were reported to be associated with the variability in FSH and LH levels, and in vitro fertilization (IVF) outcomes. In this study, we aimed to evaluate the effects of FSHB:c.-211G>T, FSHR:c.919G>A, and FSHR:c.2039G>A variants, alone and combined, on the hormonal profile and reproduction outcomes of women with endometriosis. Methods: A cross-sectional study was performed comprising 213 infertile Brazilian women with endometriosis who underwent IVF treatment. Genotyping was performed using TaqMan real-time PCR. Variables were compared according to the genotypes of each variant and genetic models, and the combined effects of the SNVs were evaluated using the multifactorial dimensionality reduction method. Results: FSHB:c.-211G>T affected LH levels in women with overall endometriosis and minimal/mild disease. FSHR:c.919G>A affected FSH levels in women with overall endometriosis and the number of oocytes retrieved in those with moderate/severe endometriosis. Moreover, the FSHR:c.2039G>A affected FSH levels in women with overall endometriosis, LH levels and total amount of rFSH in those with minimal/mild disease, and number of follicles and number of oocytes retrieved in those with moderate/severe endometriosis. No effect on hormone profile or reproductive outcomes was observed when the genotypes were combined. Conclusions: Variants of the FSHB and FSHR genes separately interfered with the hormonal profiles and IVF outcomes of women with endometriosis.


Assuntos
Endometriose/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Infertilidade Feminina/genética , Polimorfismo de Nucleotídeo Único/genética , Resultado da Gravidez/genética , Receptores do FSH/genética , Reprodução/genética , Adulto , Alelos , Brasil , Estudos Transversais , Feminino , Frequência do Gene/genética , Genótipo , Humanos , Gravidez
17.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33824966

RESUMO

FSH is critical for fertility. Transcription of FSHB, the gene encoding the beta subunit, is rate-limiting in FSH production and is regulated by both GnRH and activin. Activin signals through SMAD transcription factors. Although the mechanisms and importance of activin signaling in mouse Fshb transcription are well-established, activin regulation of human FSHB is less well understood. We previously reported a novel enhancer of FSHB that contains a fertility-associated single nucleotide polymorphism (rs10031006) and requires a region resembling a full (8 base-pair) SMAD binding element (SBE). Here, we investigated the role of the putative SBE within the enhancer in activin and GnRH regulation of FSHB. In mouse gonadotrope-derived LßT2 cells, the upstream enhancer potentiated activin induction of both the human and mouse FSHB proximal promoters and conferred activin responsiveness to a minimal promoter. Activin induction of the enhancer required the SBE and was blocked by the inhibitory SMAD7, confirming involvement of the classical SMAD signaling pathway. GnRH induction of FSHB was also potentiated by the enhancer and dependent on the SBE, consistent with known activin/GnRH synergy regulating FSHB transcription. In DNA pull-down, the enhancer SBE bound SMAD4, and chromatin immunoprecipitation demonstrated SMAD4 enrichment at the enhancer in native chromatin. Combined activin/GnRH treatment elevated levels of the active transcriptional histone marker, histone 3 lysine 27 acetylation, at the enhancer. Overall, this study indicates that the enhancer is directly targeted by activin signaling and identifies a novel, evolutionarily conserved mechanism by which activin and GnRH can regulate FSHB transcription.


Assuntos
Ativinas/farmacologia , Elementos Facilitadores Genéticos/fisiologia , Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Liberador de Gonadotropina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ativinas/metabolismo , Animais , Sinergismo Farmacológico , Elementos Facilitadores Genéticos/efeitos dos fármacos , Folistatina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais , Proteínas Smad/fisiologia , Proteína Smad4/metabolismo
18.
Front Endocrinol (Lausanne) ; 12: 780403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992580

RESUMO

Introduction and Objectives: About 30-75% of infertile men are diagnosed with idiopathic infertility, thereby lacking major causative factors to explain their impaired fertility status. In this study, we used a large cohort of idiopathic infertile men to determine whether subgroups could be identified by an unbiased clustering approach and whether underlying etiologic factors could be delineated. Patients and Methods: From our in-house database Androbase®, we retrospectively selected patients (from 2008 to 2018) with idiopathic male infertility (azoo- to normozoospermia) who fit the following selection criteria: FSH ≥ 1 IU/l, testosterone ≥ 8 nmol/l, ejaculate volume ≥ 1.5 ml. Patients with genetic abnormalities or partners with female factors were excluded.For the identified study population (n=2742), we used common andrologic features (somatic, semen and hormonal parameters, including the FSHB c.-211G>T (rs10835638) single nucleotide polymorphism) for subsequent analyses. Cluster analyses were performed for the entire study population and for two sub-cohorts, which were separated by total sperm count (TSC) thresholds: Cohort A (TSC ≥ 1 mill/ejac; n=2422) and Cohort B (TSC < 1 mill/ejac; n=320). For clustering, the partitioning around medoids method was employed, and the quality was evaluated by average silhouette width. Results: The applied cluster approach for the whole study population yielded two separate clusters, which showed significantly different distributions in bi-testicular volume, FSH and FSHB genotype. Cluster 1 contained all men homozygous for G (wildtype) in FSHB c.-211G>T (100%), while Cluster 2 contained most patients carrying a T allele (>96.6%). In the analyses of sub-cohorts A/B, two clusters each were formed too. Again, the strongest segregation markers between the respective clusters were bi-testicular volume, FSH and FSHB c.-211G>T. Conclusion: With this first unbiased approach for revealing putative subgroups within a heterogenous group of idiopathic infertile men, we did indeed identify distinct patient clusters. Surprisingly, across all diverse phenotypes of infertility, the strongest segregation markers were FSHB c.-211G>T, FSH, and bi-testicular volume. Further, Cohorts A and B were significantly separated by FSHB genotype (wildtype vs. T-allele carriers), which supports the notion of a contributing genetic factor. Consequently, FSHB genotyping should be implemented as diagnostic routine in patients with idiopathic infertility.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Genótipo , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Adulto , Análise por Conglomerados , Estudos de Coortes , Humanos , Masculino , Estudos Retrospectivos
19.
Front Endocrinol (Lausanne) ; 12: 797365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178027

RESUMO

Background: A Delphi consensus was conducted to evaluate the influence of single nucleotide polymorphisms (SNPs) in genes encoding gonadotropin and gonadotropin receptors on clinical ovarian stimulation outcomes following assisted reproductive technology (ART) treatment. Methods: Nine experts plus two Scientific Coordinators discussed and amended statements plus supporting references proposed by the Scientific Coordinators. The statements were distributed via an online survey to 36 experts, who voted on their level of agreement or disagreement with each statement. Consensus was reached if the proportion of participants agreeing or disagreeing with a statement was >66%. Results: Eleven statements were developed, of which two statements were merged. Overall, eight statements achieved consensus and two statements did not achieve consensus. The statements reaching consensus are summarized here. (1) SNP in the follicle stimulating hormone receptor (FSHR), rs6166 (c.2039A>G, p.Asn680Ser) (N=5 statements): Ser/Ser carriers have higher basal FSH levels than Asn/Asn carriers. Ser/Ser carriers require higher amounts of gonadotropin during ovarian stimulation than Asn/Asn carriers. Ser/Ser carriers produce fewer oocytes during ovarian stimulation than Asn/Asn or Asn/Ser carriers. There is mixed evidence supporting an association between this variant and ovarian hyperstimulation syndrome. (2) SNP of FSHR, rs6165 (c.919G>A, p.Thr307Ala) (N=1 statement): Few studies suggest Thr/Thr carriers require a shorter duration of gonadotropin stimulation than Thr/Ala or Ala/Ala carriers. (3) SNP of FSHR, rs1394205 (-29G>A) (N=1 statement): Limited data in specific ethnic groups suggest that A/A allele carriers may require higher amounts of gonadotropin during ovarian stimulation and produce fewer oocytes than G/G carriers. (4) SNP of FSH ß-chain (FSHB), rs10835638 (-211G>T) (N=1 statement): There is contradictory evidence supporting an association between this variant and basal FSH levels or oocyte number. (5) SNPs of luteinizing hormone ß-chain (LHB) and LH/choriogonadotropin receptor (LHCGR) genes (N=1 statement): these may influence ovarian stimulation outcomes and could represent potential future targets for pharmacogenomic research in ART, although data are still very limited. Conclusions: This Delphi consensus provides clinical perspectives from a diverse international group of experts. The consensus supports a link between some variants in gonadotropin/gonadotropin receptor genes and ovarian stimulation outcomes; however, further research is needed to clarify these findings.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Indução da Ovulação , Gonadotropina Coriônica , Consenso , Técnica Delphi , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Humanos
20.
Andrology ; 8(5): 1030-1037, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32096339

RESUMO

BACKGROUND: A genetic variant within the FSHB gene can deviate FSH action on spermatogenesis. The c.-211G>T FSHB single nucleotide polymorphism impacts FSHB transcription and biosynthesis due to interference with the LHX3 transcription factor binding. This SNP was previously shown to be strongly associated with lowered testicular volume, reduced sperm counts, and decreased FSH levels in patients carrying one or two T-alleles. OBJECTIVE: To determine the impact of the SNP FSHB c.-211G>T on Sertoli cell (SC) number, Sertoli cell workload (SCWL) and thereby spermatogenic potential. MATERIAL AND METHODS: Testicular biopsies of 31 azoospermic, homozygous T patients (26 non-obstructive azoospermia (NOA), and five obstructive azoospermia (OA)) were matched to patients with GG genotype. Marker proteins for SC (SOX9), spermatogonia (MAGE A4), and round spermatids (CREM) were used for semi-automatical quantification by immunofluorescence. SCWL (number of germ cells served by one SC) was determined and an unbiased clustering on the patient groups performed. RESULTS: Quantification of SC number in NOA patients did not yield significant differences when stratified by FSHB genotype. SC numbers are also not significantly different between FSHB genotypes for the OA patient group and between NOA and OA groups. SCWL in the NOA patient cohort is significantly reduced when compared to the OA control patients; however, in neither group an effect of the genotype could be observed. The cluster analysis of the whole study cohort yielded two groups only, namely NOA and OA, and no clustering according to the FSHB genotype. DISCUSSION AND CONCLUSION: The FSHB c.-211G>T polymorphism does not affect SC numbers or SCWL, thereby in principle maintaining the spermatogenic potential. The previously observed clinical phenotype for the FSHB genotype might therefore be caused by a hypo-stimulated spermatogenesis and not due to a decreased SC number.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Infertilidade Masculina/genética , Polimorfismo de Nucleotídeo Único , Células de Sertoli , Espermatogênese/genética , Azoospermia/genética , Contagem de Células , Estudos de Coortes , Humanos , Masculino , Regiões Promotoras Genéticas , Contagem de Espermatozoides
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa