RESUMO
AIMS: This study aimed to investigate whether berberine (BBR) can inhibit the iron reduction mechanism of Candida albicans, lowering the iron uptake of the yeast and perhaps having antimicrobial effects. METHODS AND RESULTS: We determined that BBR may cause extensive transcriptional remodeling in C. albicans and that iron permease Ftr1 played a crucial role in this process through eukaryotic transcriptome sequencing. Mechanistic research showed that BBR might selectively inhibit the iron reduction pathway to lower the uptake of exogenous iron ions, inhibiting C. albicans from growing and metabolizing. Subsequent research revealed that BBR caused significant mitochondrial dysfunction, which triggered the process of mitochondrial autophagy. Moreover, we discovered that C. albicans redox homeostasis, susceptibility to antifungal drugs, and hyphal growth are all impacted by the suppression of this mechanism by BBR. CONCLUSIONS: The iron reduction mechanism in C. albicans is disrupted by BBR, which disrupts mitochondrial function and inhibits fungal growth. These findings highlight the potential promise of BBR in antifungal applications.
Assuntos
Berberina , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Berberina/farmacologia , Sinergismo Farmacológico , Mitocôndrias/metabolismo , Ferro/metabolismoRESUMO
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. The ability to switch between yeast and hyphal growth forms is critical for its pathogenesis. Hyphal development in C. albicans requires two temporally linked regulations for initiation and maintenance. Here, we performed transcriptome sequencing (RNA-Seq) to analyze the transcriptional consequences for the two different phases of hyphal development. Genome-wide transcription profiling reveals that the sets associated with hyphal initiation were significantly enriched in genes for hyphal cell wall, biofilm matrix and actin polarization. In addition to hypha-specific genes, numerous genes involved in iron acquisition, such as FTR1 and SEF1, are highly induced specifically during sustained hyphal development even when additional free iron is supplied in the medium. Therefore, iron uptake genes are induced by signals that can support prolonged hyphal development in an iron-independent manner. The induction of iron acquisition genes during hyphal elongation was further confirmed by quantitative reverse transcription-PCR under various hypha-inducing conditions. Remarkably, preventing C. albicans from acquiring iron blocks BRG1 activation, leading to impaired hyphal maintenance, and ectopically expressed BRG1 can sustain hyphal development bypassing the requirement of iron. Our study elucidates an underlying mechanism of how multiple virulence factors are interconnected and are induced simultaneously during infection.
Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Ferro/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , VirulênciaRESUMO
The phosphoinositide 3-kinase (PI3K), which phosphorylates phosphatidylinositol and produces PI3P, has been implicated in protein trafficking, intracellular survival, and virulence in the pathogenic yeast Candida glabrata Here, we demonstrate PI3-kinase (CgVps34) to be essential for maintenance of cellular iron homeostasis. We examine how CgVps34 regulates the fundamental process of iron acquisition, and underscore its function in vesicular trafficking as a central determinant. RNA sequencing analysis revealed iron homeostasis genes to be differentially expressed upon CgVps34 disruption. Consistently, the Cgvps34Δ mutant displayed growth attenuation in low- and high-iron media, increased intracellular iron content, elevated mitochondrial aconitase activity, impaired biofilm formation, and extenuated mouse organ colonization potential. Furthermore, we demonstrate for the first time that C. glabrata cells respond to iron limitation by expressing the iron permease CgFtr1 primarily on the cell membrane, and to iron excess via internalization of the plasma membrane-localized CgFtr1 to the vacuole. Our data show that CgVps34 is essential for the latter process. We also report that macrophage-internalized C. glabrata cells express CgFtr1 on the cell membrane indicative of an iron-restricted macrophage internal milieu, and Cgvps34Δ cells display better survival in iron-enriched medium-cultured macrophages. Overall, our data reveal the centrality of PI3K signaling in iron metabolism and host colonization.
Assuntos
Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Candidíase/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Candida glabrata/genética , Candidíase/genética , Feminino , Proteínas Fúngicas/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/genéticaRESUMO
Rhizopus oryzae is one of the major causative agents of mucormycosis. The disease has a poor prognosis with a high mortality rate, and resistance towards current antifungal drugs poses additional concern. The disease treatment is complicated with antifungals; therefore, surgical approach is preferred in many cases. A comprehensive understanding of the pathogenicity-associated virulence factors of R. oryzae is essential to develop new antifungals against this fungus. Virulence factors in R. oryzae include cell wall proteins, spore germination proteins and enzymes that evade host immunity. The spore coat protein (CotH3) and high-affinity iron permease (FTR1) have been identified as promising therapeutic targets in R. oryzae. In-silico screening is a preferred approach to identify hit molecules for further in-vitro studies. In the present study, twelve bioactive molecules were docked within the active site of CotH3 and FTR1. Further, molecular dynamics simulation analysis of best-docked protein-ligand structures revealed the dynamics information of their stability in the biological system. Eugenol and isoeugenol exhibited significant binding scores with both the protein targets of R. oryzae and followed the Lipinski rule of drug-likeness. To corroborate the in-silico results, in-vitro studies were conducted using bioactive compounds eugenol, isoeugenol, and myristicin against R. oryzae isolated from the soil sample. Eugenol, isoeugenol exhibited antifungal activity at 156 µg/mL whereas myristicin at 312 µg/mL. Hence, the study suggested that eugenol and isoeugenol could be explored further as potential antifungal molecules against R. oryzae.
RESUMO
Mucormycosis is a life-threatening fungal infection, particularly in immunocompromised patients. Mucormycosis has been reported to show resistance to available antifungal drugs and was recently found in COVID-19 as a co-morbidity that demands new classes of drugs. In an attempt to find novel inhibitors against the high-affinity iron permease (FTR1), a novel target having fundamental importance on the pathogenesis of mucormycosis, 11,000 natural compounds were investigated in this study. Virtual screening and molecular docking identified two potent natural compounds [6',7,7,10',10',13'-hexamethylspiro[1,8-dihydropyrano[2,3-g]indole-3,11'-3,13-diazatetracyclo[5.5.2.01,9.03,7]tetradecane]-2,9,14'-trione and 5,7-dihydroxy-3-(2,2,8,8-tetramethylpyrano[2,3-f]chromen-6-yl)chromen-4-one] that effectively bind to the active cavity of FTR1 with a binding affinity of -9.9 kcal/mol. Multiple non-covalent interactions between the compounds and the active residues of this cavity were noticed, which is required for FTR1 inhibition. These compounds were found to have inhibitory nature and meet essential requirements to be drug-like compounds with a considerable absorption, distribution, metabolism, and excretion (ADME) profile with no toxicity probabilities. Molecular dynamics simulation confirms the structural compactness and less conformational variation of the drug-protein complexes maintaining structural stability and rigidity. MM-PBSA and post-simulation analysis predict binding stability of these compounds in the active cavity. This study hypothesizing that these compounds could be a potential inhibitor of FTR1 and will broaden the clinical prospects of mucormycosis.
Assuntos
COVID-19 , Mucormicose , Humanos , Proteínas de Membrana Transportadoras/genética , Simulação de Acoplamento Molecular , Mucormicose/microbiologia , Simulação de Dinâmica Molecular , Fungos , Ferro/metabolismoRESUMO
Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment's safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine's safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.
Assuntos
COVID-19 , Mucormicose , COVID-19/prevenção & controle , Epitopos de Linfócito B , Epitopos de Linfócito T , Fungos , Humanos , Ferro/metabolismo , Simulação de Acoplamento Molecular , Mucormicose/microbiologia , Mucormicose/prevenção & controle , SARS-CoV-2 , Vacinas Combinadas , Vacinas de Subunidades AntigênicasRESUMO
Type I interferons (IFNs-I) fulfil multiple protective functions during pathogenic infections, but they can also cause detrimental effects and enhance immunopathology. Here, we report that IFNs-I promote the dysregulation of iron homeostasis in macrophages during systemic infections with the intracellular pathogen Candida glabrata, leading to fungal survival and persistence. By engaging JAK1, IFNs-I disturb the balance of the transcriptional activator NRF2 and repressor BACH1 to induce downregulation of the key iron exporter Fpn1 in macrophages. This leads to enhanced iron accumulation in the phagolysosome and failure to restrict fungal access to iron pools. As a result, C. glabrata acquires iron via the Sit1/Ftr1 iron transporter system, facilitating fungal intracellular replication and immune evasion. Thus, IFNs-I are central regulators of iron homeostasis, which can impact infection, and restricting iron bioavailability may offer therapeutic strategies to combat invasive fungal infections.
Assuntos
Candida glabrata/patogenicidade , Homeostase , Interferon Tipo I/imunologia , Ferro/fisiologia , Macrófagos/microbiologia , Adulto , Animais , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Candidíase/imunologia , Proteínas de Transporte de Cátions/imunologia , Células Cultivadas , Feminino , Humanos , Evasão da Resposta Imune , Janus Quinase 1/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/imunologia , Fagossomos/microbiologia , Baço/imunologiaRESUMO
Epigallocatechin-3-O-gallate (EGCG), the main green tea component, is intensively studied for its anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer effects. In the present study, a screen on a Saccharomyces cerevisiae gene deletion library was performed to identify conditions under which EGCG had deleterious rather than beneficial effects. Two genes were identified whose deletion resulted in sensitivity to EGCG: FET3 and FTR1, encoding the components of the Fet3/Ftr1 high-affinity iron uptake system, also involved in Cu(I)/Cu(II) balance on the surface of yeast cells. The presence of EGCG in the growth medium induced the production of Cu(I), with deleterious effects on fet3Δ and ftr1Δ cells. Additionally, when combined, physiological surpluses of Cu(II) and EGCG acted in synergy not only against fet3Δ and ftr1Δ, but also against wild type cells, by generating surplus Cu(I) in the growth medium. The results imply that caution should be taken when combining EGCG-rich beverages/nutraceuticals with copper-rich foods.
Assuntos
Catequina/análogos & derivados , Ceruloplasmina/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Chá/química , Catequina/química , Catequina/isolamento & purificação , Catequina/farmacologia , Ceruloplasmina/deficiência , Cobre/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Saccharomyces cerevisiae/genética , Chá/metabolismoRESUMO
Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.