Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Mol Life Sci ; 79(1): 35, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989866

RESUMO

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.


Assuntos
Analgesia/métodos , Hipocinesia/fisiopatologia , Musaranhos/metabolismo , Toxinas Biológicas/metabolismo , Peçonhas/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/fisiopatologia , Dor/prevenção & controle , Homologia de Sequência de Aminoácidos , Musaranhos/genética , Trombina/antagonistas & inibidores , Trombina/metabolismo , Toxinas Biológicas/administração & dosagem , Toxinas Biológicas/genética , Peçonhas/genética
2.
BMC Med Genet ; 17: 21, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26969407

RESUMO

BACKGROUND: Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. METHODS & RESULTS: Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. CONCLUSIONS: The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.


Assuntos
Fator XIIa/genética , Calicreínas/genética , Polimorfismo de Nucleotídeo Único , Sistema Renina-Angiotensina/genética , Renina/sangue , Adolescente , Adulto , Idoso , Alelos , Angiotensina I/sangue , Angiotensinogênio/sangue , Animais , Pressão Sanguínea , Proteínas de Ciclo Celular , Linhagem Celular , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Hipertensão/genética , Sistema Justaglomerular/citologia , Calicreínas/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pré-Calicreína/metabolismo , Renina/genética , Serina Endopeptidases/metabolismo , Transferases , Adulto Jovem
3.
Zool Res ; 45(5): 1001-1012, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147715

RESUMO

Thrombosis and inflammation are primary contributors to the onset and progression of ischemic stroke. The contact-kinin pathway, initiated by plasma kallikrein (PK) and activated factor XII (FXIIa), functions bidirectionally with the coagulation and inflammation cascades, providing a novel target for therapeutic drug development in ischemic stroke. In this study, we identified a bat-derived oligopeptide from Myotis myotis (Borkhausen, 1797), designated LE6 (Leu-Ser-Glu-Glu-Pro-Glu, 702 Da), with considerable potential in stroke therapy due to its effects on the contact kinin pathway. Notably, LE6 demonstrated significant inhibitory effects on PK and FXIIa, with inhibition constants of 43.97 µmol/L and 6.37 µmol/L, respectively. In vitro analyses revealed that LE6 prolonged plasma recalcification time and activated partial thromboplastin time. In murine models, LE6 effectively inhibited carrageenan-induced mouse tail thrombosis, FeCl 3-induced carotid artery thrombosis, and photochemically induced intracerebral thrombosis. Furthermore, LE6 significantly decreased inflammation and stroke injury in transient middle cerebral artery occlusion models. Notably, the low toxicity, hemolytic activity, and bleeding risk of LE6, along with its synthetic simplicity, underscore its clinical applicability. In conclusion, as an inhibitor of FXIIa and PK, LE6 offers potential therapeutic benefits in stroke treatment by mitigating inflammation and preventing thrombus formation.


Assuntos
Oligopeptídeos , Acidente Vascular Cerebral , Animais , Camundongos , Oligopeptídeos/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Quirópteros , Trombose , Inflamação , Masculino , Anti-Inflamatórios/farmacologia
4.
Macromol Biosci ; 24(2): e2300321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37742317

RESUMO

Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.


Assuntos
Coagulação Sanguínea , Fator XII , Fator XII/metabolismo , Fator XII/farmacologia , Fator XIIa/metabolismo , Polímeros/farmacologia
5.
Biomed Pharmacother ; 166: 115421, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660649

RESUMO

Hemostasis is a crucial process that quickly forms clots at injury sites to prevent bleeding and infections. Dysfunctions in this process can lead to hemorrhagic disorders, such as hemophilia and thrombocytopenia purpura. While hemostatic agents are used in clinical treatments, there is still limited knowledge about potentiators targeting coagulation factors. Recently, LCTx-F2, a procoagulant spider-derived peptide, was discovered. This study employed various methods, including chromogenic substrate analysis and dynamic simulation, to investigate how LCTx-F2 enhances the activity of thrombin and FXIIa. Our findings revealed that LCTx-F2 binds to thrombin and FXIIa in a similar manner, with the N-terminal penetrating the active-site cleft of the enzymes and the intermediate section reinforcing the peptide-enzyme connection. Interestingly, the C-terminal remained at a considerable distance from the enzymes, as evidenced by the retention of affinity for both enzymes using truncated peptide T-F2. Furthermore, results indicated differences in the bonding relationship of critical residues between thrombin and FXIIa, with His13 facilitating binding to thrombin and Arg7 being required for binding to FXIIa. Overall, our study sheds light on the molecular mechanism by which LCTx-F2 potentiates coagulation factors, providing valuable insights that may assist in designing drugs targeting procoagulation factors.


Assuntos
Hemostáticos , Aranhas , Animais , Trombina , Fatores de Coagulação Sanguínea , Peptídeos/farmacologia
6.
Cardiovasc Hematol Agents Med Chem ; 21(2): 108-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36321236

RESUMO

BACKGROUND: Human factor XIIa (FXIIa) is a plasma serine protease that plays a significant role in several physiological and pathological processes. Animal models have revealed an important contribution of FXIIa to thromboembolic diseases. Remarkably, animals and patients with FXII deficiency appear to have normal hemostasis. Thus, FXIIa inhibition may serve as a promising therapeutic strategy to attain safer and more effective anticoagulation. Very few small molecule inhibitors of FXIIa have been reported. We synthesized and investigated a focused library of triazol-1-yl benzamide derivatives for FXIIa inhibition. METHODS: We chemically synthesized, characterized, and investigated a focused library of triazol- 1-yl benzamide derivatives for FXIIa inhibition. Using a standardized chromogenic substrate hydrolysis assay, the derivatives were evaluated for inhibiting human FXIIa. Their selectivity over other clotting factors was also evaluated using the corresponding substrate hydrolysis assays. The best inhibitor affinity to FXIIa was also determined using fluorescence spectroscopy. Effects on the clotting times (prothrombin time (PT) and activated partial thromboplastin time (APTT)) of human plasma were also studied. RESULTS: We identified a specific derivative (1) as the most potent inhibitor in this series. The inhibitor exhibited nanomolar binding affinity to FXIIa. It also exhibited significant selectivity against several serine proteases. It also selectively doubled the activated partial thromboplastin time of human plasma. CONCLUSION: Overall, this work puts forward inhibitor 1 as a potent and selective inhibitor of FXIIa for further development as an anticoagulant.


Assuntos
Coagulação Sanguínea , Fator XIIa , Animais , Humanos , Fator XIIa/metabolismo , Fator XIIa/farmacologia , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Tempo de Protrombina
7.
Bioinformation ; 19(2): 160-166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814681

RESUMO

The human factor XIIa is a serine protease enzyme that is implicated in the pathological thrombosis. This coagulation factor represents an interesting molecular target to design safer antithrombotic agents without adversely influencing physiological hemostasis. Therefore, it is of interest to virtually screen the human factor XIIa crystal with millions of compounds in Mcule database in order to identify potential inhibitors. For this purpose, both molecular docking and dynamics simulation were employed to identify potential hits. Also, various predictive approaches were utilized to estimate chemical, pharmacokinetics and toxicological features for the top hits. As such, we report here that compound 4 (1-(4-benzylpiperazin-1-yl)-2-[5-(3,5-dimethylpyrazol-1-yl)-1,2,3, 4-tetrazol-2-yl]ethanone) may be a potential ligand against the human factor XIIa for further consideration in the design and development of novel antithrombotic agents.

8.
Expert Rev Hematol ; 16(8): 593-605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335893

RESUMO

INTRODUCTION: Antithrombotic therapy field is undergoing rapid and significant changes during the past decade. In addition to new therapeutic strategies with existing targets, investigators are exploring the potential use of new targets to address unmet needs to treat patients with arterial diseases. AREAS COVERED: We aim to provide an update on and a comprehensive review of the antithrombic agents that are being explored in patients with arterial diseases. We discuss latest developments with respect to upstream antiplatelet agents, and collagen and thrombin pathway inhibitors. We searched PubMed databases for English language articles using keywords: antiplatelet agents, thrombin pathway inhibitors, collagen receptors, arterial disease. EXPERT OPINION: Despite implementation of potent P2Y12 inhibitors, there are numerous unmet needs in the treatment of arterial diseases including ceiling effect of currently available antiplatelet agents along with and an elevated risk of bleeding. The latter observations encouraged investigators to explore new targets that can attenuate the generation of platelet-fibrin clot formation and subsequent ischemic event occurrences with minimal effect on bleeding. These targets include collagen receptors on platelets and thrombin generation including FXa, FXIa, and FXIIa. In addition, investigators are studying novel antiplatelet agents/strategies to facilitate upstream therapy in high-risk patients.


Assuntos
Inibidores da Agregação Plaquetária , Trombose , Humanos , Inibidores da Agregação Plaquetária/efeitos adversos , Trombina/metabolismo , Trombina/farmacologia , Trombina/uso terapêutico , Trombose/tratamento farmacológico , Trombose/etiologia , Plaquetas/metabolismo , Hemorragia/etiologia , Hemorragia/tratamento farmacológico , Receptores de Colágeno/metabolismo
9.
Life Sci ; 309: 121021, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208658

RESUMO

AIMS: Anticoagulation in disease treatment has been wildly studied in recent years. The intrinsic coagulation pathway is attracting attention of research community due to its low bleeding risk, and inhibitors against intrinsic coagulation factor XIIa (FXIIa) or XIa (FXIa) have been extensively studied. However, studies to develop anticoagulant inhibitors simultaneous targeting FXIIa and FXIa have not been reported. Our study aimed to evaluate the anticoagulation effect of the dual targeting of FXIIa and FXIa. MAIN METHODS: A fusion protein Infestin-PN2KPI (IP) was designed by linking FXIIa inhibitor Infesin4 and FXIa inhibitor PN2KPI through a rigid linker, and was cloned, expressed and characterized. The binding of IP to FXIIa and FXIa was verified by SPR, and inhibitory ability of IP against FXIIa and FXIa was verified by chromogenic substrate method. And then, the anticoagulation and antithrombotic functions of IP were extensively evaluated by aPTT assay, FeCl3-induced carotid artery thrombosis model and transient occlusion of the middle cerebral artery model. KEY FINDINGS: IP significantly prolonged aPTT, inhibited thrombosis and prevented stroke at a dose of at least 1/2 lower than the effective dose of its component Infestin4 or PN2KPI, and did not cause bleed risk. SIGNIFICANCE: The bifunctional fusion protein IP showed good anticoagulation effects, and simultaneous targeting FXIIa and FXIa is a promising strategy for anticoagulation drug development.


Assuntos
Fator XIIa , Fator XIa , Humanos , Fator XIa/química , Fator XIa/metabolismo , Fibrinolíticos/farmacologia , Compostos Cromogênicos , Anticoagulantes/farmacologia , Hemorragia
10.
Biomark Res ; 9(1): 5, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422144

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia and most of AD patients suffer from vascular abnormalities and neuroinflammation. There is an urgent need to develop novel blood biomarkers capable of diagnosing Alzheimer's disease (AD) at very early stage. This study was performed to find out new accurate plasma diagnostic biomarkers for AD by investigating a direct relationship between plasma contact system and AD. METHODS: A total 101 of human CSF and plasma samples from normal and AD patients were analyzed. The contact factor activities in plasma were measured with the corresponding specific peptide substrates. RESULTS: The activities of contact factors (FXIIa, FXIa, plasma kallikrein) and FXa clearly increased and statistically correlated as AD progresses. We present here, for the first time, the FXIIa cut-off scores to as: > 26.3 U/ml for prodromal AD [area under the curve (AUC) = 0.783, p < 0.001] and > 27.2 U/ml for AD dementia (AUC = 0.906, p < 0.001). We also describe the cut-off scores from the ratios of CSF Aß1-42 versus the contact factors. Of these, the representative ratio cut-off scores of Aß1-42/FXIIa were to be: < 33.8 for prodromal AD (AUC = 0.965, p < 0.001) and < 27.44 for AD dementia (AUC = 1.0, p < 0.001). CONCLUSION: The activation of plasma contact system is closely associated with clinical stage of AD, and FXIIa activity as well as the cut-off scores of CSF Aß1-42/FXIIa can be used as novel accurate diagnostic AD biomarkers.

11.
ChemMedChem ; 16(24): 3672-3690, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34278727

RESUMO

Herein we report a microscale parallel synthetic approach allowing for rapid access to libraries of N-acylated aminotriazoles and screening of their inhibitory activity against factor XIIa (FXIIa) and thrombin, which are targets for antithrombotic drugs. This approach, in combination with post-screening structure optimization, yielded a potent 7 nM inhibitor of FXIIa and a 25 nM thrombin inhibitor; both compounds showed no inhibition of the other tested serine proteases. Selected N-acylated aminotriazoles exhibited anticoagulant properties in vitro influencing the intrinsic blood coagulation pathway, but not extrinsic coagulation. Mechanistic studies of FXIIa inhibition suggested that synthesized N-acylated aminotriazoles are covalent inhibitors of FXIIa. These synthesized compounds may serve as a promising starting point for the development of novel antithrombotic drugs.


Assuntos
Amitrol (Herbicida)/farmacologia , Anticoagulantes/farmacologia , Fator XIIa/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Trombina/antagonistas & inibidores , Acilação , Amitrol (Herbicida)/síntese química , Amitrol (Herbicida)/química , Anticoagulantes/síntese química , Anticoagulantes/química , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator XIIa/metabolismo , Humanos , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Trombina/metabolismo
12.
Chem Biol Drug Des ; 94(5): 1905-1918, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31148409

RESUMO

The experimental inhibitory potency of benzamidine (BEN) paved way for further design and development of inhibitors that target ß-FXIIa. Structural dynamics of the loops and catalytic residues that encompass the binding pocket of ß-FXIIa and all serine proteases are crucial to their overall activity. Employing molecular dynamics and post-MD analysis, this study sorts to unravel the structural and molecular events that accompany the inhibitory activity of BEN on human ß-FXIIa upon selective non-covalent binding. Analysis of conformational dynamics of crucial loops revealed prominent alterations of the original conformational posture of FXIIa, evidenced by increased flexibility, decreased compactness, and an increased exposure to solvent upon binding of BEN, which could have in turn interfered with the essential roles of these loops in enhancing their procoagulation interactions with biological substrates and cofactors, altogether resulting in the consequential inactivation of FXIIa. A sustained interaction of the catalytic triad residues and key residues of the autolysis loop impeded their roles in catalysis which equally enhanced the inhibitory potency of BEN toward ß-FXIIa evidenced by a favorable binding. Findings provide essential structural and molecular insights that could facilitate the structure-based design of novel antithrombotic compounds with enhanced inhibitory activities and low therapeutic risk.


Assuntos
Benzamidinas/química , Coagulação Sanguínea/efeitos dos fármacos , Fator XIIa/antagonistas & inibidores , Fibrinolíticos/química , Sequência de Aminoácidos , Domínio Catalítico , Desenho de Fármacos , Fator XIIa/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
14.
Methods Mol Biol ; 1604: 405-417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986851

RESUMO

During the course of infection with a hemorrhagic fever virus (HFV), the checks and balances associated with normal coagulation are perturbed resulting in hemorrhage in severe cases and, in some patients, disseminated intravascular coagulopathy (DIC). While many HFVs have animal models that permit the analyses of systemic coagulopathy, animal infection models do not exist for all HFVs and moreover do not always recapitulate the pathology observed in human tissues. Furthermore, molecular analyses of how coagulation is affected are not always straightforward or practical when using ex-vivo animal-derived samples, thus reinforcing the importance of cell culture studies. This chapter highlights procedures utilizing human umbilical vein endothelial cells (HUVECs) as a model system to evaluate components of the intrinsic (prekallikrein (PK), factor XII (FXII), kininogen, and bradykinin (BK)) and extrinsic (Tissue Factor (TF)) systems. Specifically, protocols are included for the generation of a coculture blood vessel model, plating and infection of HUVEC monolayers and assays designed to measure activation of PK and FXII, cleavage of kininogen, and to measure the expression of TF mRNA and protein.


Assuntos
Febre Hemorrágica com Síndrome Renal/metabolismo , Bradicinina/metabolismo , Fator XII/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Cininogênios/metabolismo , Pré-Calicreína/metabolismo , Tromboplastina/metabolismo
15.
Materials (Basel) ; 11(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865173

RESUMO

Calcium sulfate (CS) formulations are frequently implanted as antibiotically impregnated bone substitutes in orthopedic and trauma surgery to prevent or treat bone infections. Calcium ions have been discussed as candidates to accelerate blood coagulation. The goal of this study is to evaluate substance-specific influences of CS formulations on blood coagulation. Specific ELISAs were conducted to determine markers of activated blood coagulation after incubation of human blood with CS beads. Additionally, wettability with freshly drawn human blood was measured. Three different types of CS bone substitute beads were compared (CS dihydrate with tripalmitin, containing Gentamicin (Herafill®-G: Group A) or Vancomycin (CaSO4-V: Group B); and a CS hemihydrate with Tobramycin (Osteoset®: Group C)). Examinations were performed by ELISA assays for F1+2, FXIIa and C3a. Our results prove that none of the CS preparations accelerated single specific assays for activated coagulation markers. This allows the conclusion that neither Herafill®-G (CaSO4-G) nor CaSO4-V alter haemostasis negatively. Blood samples incubated with Osteoset® display an elevated F1+2-activity. The addition of tripalmitin in Herafill®-G shifts the original into a significantly hydrophobic formulation. This was additionally proven by contact angle examination of the three substances with freshly drawn human blood, showing that acceleration of plasmatic coagulation is hindered by lipids and induced by surface effects caused by presence of rapidly soluble calcium ions in the Osteoset® preparation.

16.
Thromb Res ; 157: 126-133, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28738274

RESUMO

Over the last decade, the coagulation factor XIIa (FXIIa) has seen renewed interest as a therapeutic target. Indeed, its inhibition could offer a protection against thrombosis without increasing the risk of bleeding. Moreover, it could answer the need for a safe prevention of blood-contacting medical devices-related thrombosis. Among the FXII and FXIIa inhibitors already described in literature, organic small-molecular-weight inhibitors are rather left behind. In this study, we were focused on the discovery and assessment of water soluble small molecules. First, a search within our library of compounds flagged two promising hits. Indeed, enzymes and plasma assays suggested they have a greater activity on the contact factors (FXIa, plasma kallikrein and FXIIa) than on the TF pathway. Then, simple pharmacomodulations were undertaken with the aim to design more selective FXIIa inhibitors. This afforded compounds having different degrees of selectivity. All compounds were finally screened in whole blood using an 8-channel microfluidic model and thromboelastometry measurements. Interestingly, all molecules interfered with the thrombus formation and one of them could be considered as a small organic contact inhibitor.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Cumarínicos/uso terapêutico , Cumarínicos/farmacologia , Humanos
17.
Front Med (Lausanne) ; 3: 58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27921033

RESUMO

The recent availability of a sensitive chromogenic method approach for determination of FXIa activity has been explored for designing sensitive methods for FXIIa and kallikrein, both using FXa formation as the read-out. For both enzymes the assay range 1-10 nmol/L provides a resolution of about 0.8 absorbance units with a total assay time of about 20 min. For studies on activation kinetics, subsampling and extensive dilution can be performed in MES-bovine serum albumin (BSA) buffer pH 5.7 for quenching of enzyme activity and with ensuing determination of FXa generation in a chromogenic FXIa method. Optionally, suitable inhibitors such as aprotinin and/or corn trypsin inhibitor may be included. The stability of FXIa, FXIIa, and kallikrein in MES-BSA buffer was shown to be at least 5 h on ice. In conclusion, the use of a sensitive chromogenic FXIa method either per se or in combination with MES-BSA buffer pH 5.7 are new and potentially valuable tools for the study of contact factor enzymes and their inhibitors. So far, dose-response studies of FXIIa and kallikrein have been limited to purified systems, and hence more data are required to learn whether these new methods might or might not be applicable to the determination of FXIIa and kallikrein activities in plasma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa