Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Br J Nutr ; 119(10): 1102-1110, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29759109

RESUMO

Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.


Assuntos
Anticolesterolemiantes/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Hordeum , Grãos Integrais , Gordura Abdominal , Animais , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Biomarcadores/análise , Colesterol/biossíntese , Colesterol/genética , Colesterol/metabolismo , Dieta , Fibras na Dieta/administração & dosagem , Fezes/química , Expressão Gênica , Intestino Delgado/química , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/sangue , Fígado/química , Fígado/metabolismo , Masculino , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley
2.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013008

RESUMO

Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut⁻liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.


Assuntos
Tecido Adiposo/metabolismo , Sistema Cardiovascular/metabolismo , Metabolismo Energético , Rim/metabolismo , Pâncreas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Homeostase , Humanos
3.
J Orthop Translat ; 38: 23-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36313979

RESUMO

Background: Geniposidic acid (GPA), one of the active components of Eucommia ulmoides, promote bone formation and treat osteoporosis by activating farnesoid X receptor (FXR). However, GPA has low oral availability and lack of bone targeting in the treatment of bone related diseases. With the development of modern technology, small molecules, amino acids, or aptamers are used for biological modification of drugs and target cells in bone tissue, which has become the trend of bone targeted research. Methods: In this study, SDSSD (an osteoblast-targeting peptide) were modified in GPA using Fmoc solid-phase synthesis technique to form a new SDSSD-GPA conjugate (SGPA). The bone targeting of SGPA was evaluated using in vivo imaging and cell co-culture. In vitro, the effect of SGPA on cytotoxicity, osteoblastic activity, and mineralization ability were studied in mouse primary osteoblasts (OBs). In vivo, the therapeutic effect of SGPA on osteoporosis using an ovariectomized (OVX) mouse model. The bone mass, histomorphometry, serum biochemical parameters, and the molecular mechanism were evaluated. Results: SGPA was enriched in OBs and tends to accumulate in bone tissue. In vitro, SGPA significantly enhanced the osteogenic activity and mineralization of OBs compared with GPA. In vivo, SGPA enhanced serum BALP and P1NP levels, increased the trabecular bone mass of the mice, and SGPA administration have a higher bone mineralization deposition rate than the GPA-treated mice. Moreover, SGPA significantly activated FXR and Runt-related transcription factor 2 (RUNX2). Conclusions: Collectively, SGPA is enriched into OBs, and promotes bone formation by activating FXR-RUNX2 signalling, effectively treating osteoporosis at relatively low doses. The translational potential of this article: This study demonstrates a more efficient and safe application of GPA in treating osteoporosis, provide a new concept for the bone targeted application of natural compounds.

4.
J Transl Autoimmun ; 6: 100188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684809

RESUMO

Introduction: Primary biliary cholangitis (PBC) is an autoimmune liver disease involving the small intrahepatic bile ducts; when untreated or undertreated, it may evolve to liver fibrosis and cirrhosis. Ursodeoxycholic Acid (UDCA) is the standard of care treatment, Obeticholic Acid (OCA) has been approved as second-line therapy for those non responder or intolerant to UDCA. However, due to moderate rate of UDCA-non responders and to warnings recently issued against OCA use in patients with cirrhosis, further therapies are needed.Areas covered. Deep investigations into the pathogenesis of PBC is leading to proposal of new therapeutic agents, among which peroxisome proliferator-activated receptor (PPAR) ligands seem to be highly promising given the preliminary, positive results in Phase 2 and 3 trials. Bezafibrate, the most evaluated, is currently used in clinical practice in combination with UDCA in referral centers. We herein describe completed and ongoing trials involving PPAR agonists use in PBC, analyzing pits and falls. Expert opinion: Testing new therapeutic opportunities in PBC is challenging due to its low prevalence and slow progression. However, new drugs including PPAR agonists, are currently under investigation and should be considered for at-risk PBC patients.

5.
J Clin Exp Hepatol ; 13(2): 273-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950481

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and in India. The already high burden of NAFLD in India is expected to further increase in the future in parallel with the ongoing epidemics of obesity and type 2 diabetes mellitus. Given the high prevalence of NAFLD in the community, it is crucial to identify those at risk of progressive liver disease to streamline referral and guide proper management. Existing guidelines on NAFLD by various international societies fail to capture the entire landscape of NAFLD in India and are often difficult to incorporate in clinical practice due to fundamental differences in sociocultural aspects and health infrastructure available in India. A lot of progress has been made in the field of NAFLD in the 7 years since the initial position paper by the Indian National Association for the Study of Liver on NAFLD in 2015. Further, the ongoing debate on the nomenclature of NAFLD is creating undue confusion among clinical practitioners. The ensuing comprehensive review provides consensus-based, guidance statements on the nomenclature, diagnosis, and treatment of NAFLD that are practically implementable in the Indian setting.

6.
J Clin Exp Hepatol ; 12(2): 625-638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535069

RESUMO

Gut microbiota and their homeostatic functions are central to the maintenance of the intestinal mucosal barrier. The gut barrier functions as a structural, biological, and immunological barrier, preventing local and systemic invasion and inflammation of pathogenic taxa, resulting in the propagation or causation of organ-specific (liver disease) or systemic diseases (sepsis) in the host. In health, commensal bacteria are involved in regulating pathogenic bacteria, sinister bacterial products, and antigens; and help control and kill pathogenic organisms by secreting antimicrobial metabolites. Gut microbiota also participates in the extraction, synthesis, and absorption of nutrient metabolites, maintains intestinal epithelial integrity and regulates the development, homeostasis, and function of innate and adaptive immune cells. Cirrhosis is associated with local and systemic immune, vascular, and inflammatory changes directly or indirectly linked to perturbations in quality and quantity of intestinal microbiota and intestinal mucosal integrity. Dysbiosis and gut barrier dysfunction are directly involved in the pathogenesis of compensated cirrhosis and the type and severity of complications in decompensated cirrhosis, such as bacterial infections, encephalopathy, extrahepatic organ failure, and progression to acute on chronic liver failure. This paper reviews the normal gut barrier, gut barrier dysfunction, and dysbiosis-associated clinical events in patients with cirrhosis. The role of dietary interventions, antibiotics, prebiotics, probiotics, synbiotics, and healthy donor fecal microbiota transplantation (FMT) to modulate the gut microbiota for improving patient outcomes is further discussed.

7.
Curr Res Toxicol ; 3: 100092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353521

RESUMO

Toxicology in the 21st Century (Tox21) is a federal collaboration employing a high-throughput robotic screening system to test 10,000 environmental chemicals. One of the primary goals of the program is prioritizing toxicity evaluations through in vitro high-throughput screening (HTS) assays for large numbers of chemicals already in commercial use for which little or no toxicity data is available. Within the Tox21 screening program, disruption in nuclear receptor (NR) signaling represents a particular area of interest. Given the role of NR's in modulating a wide range of biological processes, alterations of their activity can have profound biological impacts. Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that has demonstrated importance in bile acid homeostasis, glucose metabolism, lipid homeostasis and hepatic regeneration. In this study, we re-evaluated 24 FXR agonists and antagonists identified through Tox21 using select orthogonal assays. In transient transactivation assays, 7/8 putative agonists and 4/4 putative inactive compounds were confirmed. Likewise, we confirmed 9/12 antagonists tested. Using a mammalian two hybrid approach we demonstrate that both FXR agonists and antagonists facilitate FXRα-coregulator interactions suggesting that differential coregulator recruitment may mediate activation/repression of FXRα mediated transcription. Additionally, we tested the ability of select FXR agonists and antagonists to facilitate hepatic transcription of FXR gene targets Shp and Bsep in a teleost (Medaka) model. Through application of in vitro cell-based assays, in silico modeling and in vivo gene expressions, we demonstrated the molecular complexity of FXR:ligand interactions and confirmed the ability of diverse ligands to modulate FXRα, facilitate differential coregulator recruitment and activate/repress receptor-mediated transcription. Overall, we suggest a multiplicative approach to assessment of nuclear receptor function may facilitate a greater understanding of the biological and mechanistic complexities of nuclear receptor activities and further our ability to interpret broad HTS outcomes.

8.
JHEP Rep ; 4(5): 100463, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462858

RESUMO

Background & Aims: Organic solute transporter (OST) subunits OSTα and OSTß facilitate bile acid efflux from the enterocyte into the portal circulation. Patients with deficiency of OSTα or OSTß display considerable variation in the level of bile acid malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTß deficiency. Methods: Ostß -/- mice were generated using CRISR/Cas9 and compared to wild-type and Ostα -/- mice. OSTß was re-expressed in livers of Ostß -/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding. Results: Similar to Ostα -/- mice, Ostß -/- mice exhibited elongated small intestines with blunted villi and increased crypt depth. Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostß -/- mice indicate the accumulation of bile acids in the enterocyte. In contrast to Ostα -/- mice, induction of cholestasis in Ostß -/- mice by BDL or DDC diet led to lower survival rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostß expression via adeno-associated virus-mediated overexpression did not rescue the phenotype of Ostß -/- mice. Conclusions: OSTß is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to Ostα -/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our findings provide insights into the variable clinical presentation of patients with OSTα and OSTß deficiencies. Lay summary: Organic solute transporter (OST) subunits OSTα and OSTß together facilitate the efflux of conjugated bile acids into the portal circulation. Ostα knockout mice have longer and thicker small intestines and are largely protected against experimental cholestatic liver injury. Herein, we generated and characterized Ostß knockout mice for the first time. Ostα and Ostß knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostß knockout mice had a worsened overall phenotype which indicates a separate and specific role of OSTß, possibly as an interacting partner of other intestinal proteins.

9.
J Clin Exp Hepatol ; 12(2): 701-704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535055

RESUMO

We report a novel homozygous missense variant in ABCB4 gene in a Yemeni child born to consanguineous parents, with a significant family history of liver disease-related deaths, resulting in a progressive familial intrahepatic cholestasis (PFIC) type 3 phenotype requiring liver transplantation for intractable pruritus.

10.
J Clin Exp Hepatol ; 12(2): 454-460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535061

RESUMO

Background/Aims: This study aimed to delineate the clinical profile of children diagnosed with progressive familial intrahepatic cholestasis (PFIC). Methods: This study was a retrospective analysis of case records of children in the tertiary care hospital, with the diagnosis of PFIC from January 2017 to January 2020. The diagnosis was made using clinical and laboratory parameters and with genetic testing when available. Medical and surgical management was according to the departmental protocol. Liver transplant was offered to children with end-stage liver disease, intractable pruritus, or severe growth failure. Result: There were 13 identified PFIC cases (familial intrahepatic cholestasis 1 [FIC1] deficiency-4, bile salt export pump (BSEP) deficiency-3, tight junction protein [TJP2] deficiency 3, multidrug-resistant protein 3 [MDR3] deficiency 2 and farnesoid X receptor deficiency-1). PFIC subtypes 1, 2, and 5 presented in infancy, whereas MDR3 presented in childhood. TJP2 deficiency had varied age of presentation from infancy to adolescence. Jaundice with or without pruritus was present in most cases. Genetic testing was carried out in 10 children, of which five had a homozygous mutation, three had a compound heterozygous mutation, and two had a heterozygous mutation. Three children (FIC1-2 and TJP2-1) underwent biliary diversion, of which clinical improvement was seen in two. Six children underwent liver transplantation, which was successful in four. Conclusion: Byler's disease was the most common subtype. A clinicopathologic correlation with molecular diagnosis leads to early diagnosis and management. Liver transplantation provides good outcomes in children with end-stage liver disease.

11.
JHEP Rep ; 4(11): 100544, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36267872

RESUMO

Background & Aims: The safety, tolerability, and efficacy of the non-bile acid farnesoid X receptor agonist tropifexor were evaluated in a phase II, double-blind, placebo-controlled study as potential second-line therapy for patients with primary biliary cholangitis (PBC) with an inadequate ursodeoxycholic acid response. Methods: Patients were randomised (2:1) to receive tropifexor (30, 60, 90, or 150 µg) or matched placebo orally once daily for 28 days, with follow-up on Days 56 and 84. Primary endpoints were safety and tolerability of tropifexor and reduction in levels of γ-glutamyl transferase (GGT) and other liver biomarkers. Other objectives included patient-reported outcome measures using the PBC-40 quality-of-life (QoL) and visual analogue scale scores and tropifexor pharmacokinetics. Results: Of 61 enrolled patients, 11, 9, 12, and 8 received 30-, 60-, 90-, and 150-µg tropifexor, respectively, and 21 received placebo; 3 patients discontinued treatment because of adverse events (AEs) in the 150-µg tropifexor group. Pruritus was the most frequent AE in the study (52.5% [tropifexor] vs. 28.6% [placebo]), with most events of mild to moderate severity. Decreases seen in LDL-, HDL-, and total-cholesterol levels at 60-, 90-, and 150 µg doses stabilised after treatment discontinuation. By Day 28, tropifexor caused 26-72% reduction in GGT from baseline at 30- to 150-µg doses (p <0.001 at 60-, 90-, and 150-µg tropifexor vs. placebo). Day 28 QoL scores were comparable between the placebo and tropifexor groups. A dose-dependent increase in plasma tropifexor concentration was observed, with 5- to 5.55-fold increases in AUC0-8h and Cmax between 30- and 150-µg doses. Conclusions: Tropifexor showed improvement in cholestatic markers relative to placebo, predictable pharmacokinetics, and an acceptable safety-tolerability profile, thereby supporting its potential further clinical development for PBC. Lay summary: The bile acid ursodeoxycholic acid (UDCA) is the standard-of-care therapy for primary biliary cholangitis (PBC), but approximately 40% of patients have an inadequate response to this therapy. Tropifexor is a highly potent non-bile acid agonist of the farnesoid X receptor that is under clinical development for various chronic liver diseases. In the current study, in patients with an inadequate response to UDCA, tropifexor was found to be safe and well tolerated, with improved levels of markers of bile duct injury at very low (microgram) doses. Itch of mild to moderate severity was observed in all groups including placebo but was more frequent at the highest tropifexor dose. Clinical Trials Registration: This study is registered at ClinicalTrials.gov (NCT02516605).

12.
JHEP Rep ; 4(11): 100561, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36176935

RESUMO

Background & Aims: Farnesoid X receptor (FXR) agonists and fibroblast growth factor 19 (FGF19) analogues suppress bile acid synthesis and are being investigated for their potential therapeutic efficacy in cholestatic liver diseases. We investigated whether bile acid synthesis associated with outcomes in 2 independent populations of people with primary sclerosing cholangitis (PSC) not receiving such therapy. Methods: Concentrations of individual bile acids and 7α-hydroxy-4-cholesten-3-one (C4) were measured in blood samples from 330 patients with PSC attending tertiary care hospitals in the discovery and validation cohorts and from 100 healthy donors. We used a predefined multivariable Cox proportional hazards model to evaluate the prognostic value of C4 to predict liver transplantation-free survival and evaluated its performance in the validation cohort. Results: The bile acid synthesis marker C4 was negatively associated with total bile acids. Patients with fully suppressed bile acid synthesis had strongly elevated total bile acids and short liver transplantation-free survival. In multivariable models, a 50% reduction in C4 corresponded to increased hazards for liver transplantation or death in both the discovery (adjusted hazard ratio [HR] = 1.24, 95% CI 1.06-1.43) and validation (adjusted HR = 1.23, 95% CI 1.03-1.47) cohorts. Adding C4 to established risk scores added value to predict future events, and predicted survival probabilities were well calibrated externally. There was no discernible impact of ursodeoxycholic acid treatment on bile acid synthesis. Conclusions: Bile acid accumulation-associated suppression of bile acid synthesis was apparent in patients with advanced PSC and associated with reduced transplantation-free survival. In a subset of the patients, bile acid synthesis was likely suppressed beyond a tipping point at which any further pharmacological suppression may be futile. Implications for patient stratification and inclusion criteria for clinical trials in PSC warrant further investigation. Lay summary: We show, by measuring the level of the metabolite C4 in the blood from patients with primary sclerosing cholangitis (PSC), that low production of bile acids in the liver predicts a more rapid progression to severe disease. Many people with PSC appear to have fully suppressed bile acid production, and both established and new drugs that aim to reduce bile acid production may therefore be futile for them. We propose C4 as a test to find those likely to respond to these treatments.

13.
J Clin Exp Hepatol ; 12(1): 200-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068799

RESUMO

Bile acid metabolism is altered in neonates on parenteral nutrition (PN), predisposing them to parenteral nutrition-associated liver disease. Cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the bile acid synthesis pathway, is repressed by fibroblast growth factor 19 (FGF19) and phytosterols (PS). We describe a case of a preterm infant who developed necrotizing enterocolitis (NEC) and received exclusive PN for over 2 months. Our objective was to serially assess CYP7A1 activity and plasma FGF19 and PS concentrations in this infant case compared to five healthy preterm infants. We found that CYP7A1 activity increased during the first 2 weeks of life in control infants but was undetectable in the infant case. FGF19 concentrations were high at birth in all infants and subsequently declined and did not differ between the case and control infants. As expected, PS concentrations were elevated in the infant case and continued to increase despite lipid minimization. In conclusion, CYP7A1 activity was gradually upregulated in healthy preterm infants but remained suppressed in the infant requiring prolonged PN. Preterm infants also had elevated FGF19 concentrations at birth, which decreased with advancing postnatal age.

14.
JHEP Rep ; 4(1): 100387, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825156

RESUMO

BACKGROUND & AIMS: Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. METHODS: We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. RESULTS: Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. CONCLUSIONS: BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. LAY SUMMARY: This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.

15.
JHEP Rep ; 4(1): 100392, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34977519

RESUMO

BACKGROUND & AIMS: Increased serum bile acids (BAs) have been observed in patients with non-alcoholic steatohepatitis (NASH). Pegbelfermin (PGBF), a polyethylene glycol-modified (PEGylated) analogue of human fibroblast growth factor 21 (FGF21), significantly decreased hepatic steatosis and improved fibrosis biomarkers and metabolic parameters in patients with NASH in a phase IIa trial. This exploratory analysis evaluated the effect of PGBF on serum BAs and explored potential underlying mechanisms. METHODS: Serum BAs and 7α-hydroxy-4-cholesten-3-one (C4) were measured by HPLC-mass spectrometry (MS) using serum collected in studies of patients with NASH (NCT02413372) and in overweight/obese adults (NCT03198182) who received PGBF. Stool samples were collected in NCT03198182 to evaluate faecal BAs by liquid chromatography (LC)-MS and the faecal microbiome by metagenetic and metatranscriptomic analyses. RESULTS: Significant reductions from baseline in serum concentrations of the secondary BA, deoxycholic acid (DCA), and conjugates, were observed with PGBF, but not placebo, in patients with NASH; primary BA concentrations did not significantly change in any arm. Similar effects of PGBF on BAs were observed in overweight/obese adults, allowing for an evaluation of the effects of PGBF on the faecal microbiome and BAs. Faecal transcriptomic analysis showed that the relative abundance of the gene encoding choloylglycine hydrolase, a critical enzyme for secondary BA synthesis, was reduced after PGBF, but not placebo, administration. Furthermore, a trend of reduction in faecal secondary BAs was observed. CONCLUSIONS: PGBF selectively reduced serum concentrations of DCA and conjugates in patients with NASH and in healthy overweight/obese adults. Reduced choloylglycine hydrolase gene expression and decreased faecal secondary BA levels suggest a potential role for PGBF in modulating secondary BA synthesis by gut microbiome. The clinical significance of DCA reduction post-PGBF treatment warrants further investigation. LAY SUMMARY: Pegbelfermin (PGBF) is a hormone that is currently being studied in clinical trials for the treatment of non-alcoholic fatty liver disease. In this study, we show that PGBF treatment can reduce bile acids that have previously been shown to have toxic effects on the liver. Additional studies to understand how PGBF regulates bile acids may provide additional information about its potential use as a treatment for fatty liver.

16.
JHEP Rep ; 4(8): 100524, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845296

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.

17.
JHEP Rep ; 4(6): 100479, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469167

RESUMO

Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.

18.
J Clin Exp Hepatol ; 12(1): 155-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068796

RESUMO

Chronic liver disease (CLD) is one of the leading causes of disability-adjusted life years in many countries. A recent understanding of nuclear bile acid receptor pathways has increased focus on the impact of crosstalk between the gut, bile acids, and liver on liver pathology. While conventionally used in cholestatic disorders and to dissolve gallstones, the discovery of bile acids' influence on the gut microbiome and human metabolism offers a unique potential for their utility in early and advanced liver diseases because of diverse etiologies. Based on these findings, preclinical studies using bile acid-based molecules have shown encouraging results at addressing liver inflammation and fibrosis. Emerging data also suggest that bile acid profiles change distinctively across various causes of liver disease. We summarize the current knowledge and evidence related to bile acids in health and disease and discuss culminated and ongoing therapeutic trials of bile acid derivatives in CLD. In the near future, further evidence in this area might help clinicians better detect and manage liver diseases.

19.
Acta Pharm Sin B ; 12(5): 2129-2149, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646540

RESUMO

Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.

20.
J Clin Exp Hepatol ; 12(1): 186-199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068798

RESUMO

BACKGROUND: Cirrhotic cardiomyopathy refers to the structural and functional changes in the heart leading to either impaired systolic, diastolic, electrocardiographic, and neurohormonal changes associated with cirrhosis and portal hypertension. Cirrhotic cardiomyopathy is present in 50% of patients with cirrhosis and is clinically seen as impaired contractility, diastolic dysfunction, hyperdynamic circulation, and electromechanical desynchrony such as QT prolongation. In this review, we will discuss the cardiac physiology principles underlying cirrhotic cardiomyopathy, imaging techniques such as cardiac magnetic resonance imaging and scintigraphy, cardiac biomarkers, and newer echocardiographic techniques such as tissue Doppler imaging and speckle tracking, and emerging treatments to improve outcomes. METHODS: We reviewed available literature from MEDLINE for randomized controlled trials, cohort studies, cross-sectional studies, and real-world outcomes using the search terms "cirrhotic cardiomyopathy," "left ventricular diastolic dysfunction," "heart failure in cirrhosis," "liver transplantation," and "coronary artery disease". RESULTS: Cirrhotic cardiomyopathy is associated with increased risk of complications such as hepatorenal syndrome, refractory ascites, impaired response to stressors including sepsis, bleeding or transplantation, poor health-related quality of life and increased morbidity and mortality. The evaluation of cirrhotic cardiomyopathy should also guide the feasibility of procedures such as transjugular intrahepatic portosystemic shunt, dose titration protocol of betablockers, and liver transplantation. The use of targeted heart rate reduction is of interest to improve cardiac filling and improve the cardiac output using repurposed heart failure drugs such as ivabradine. Liver transplantation may also reverse the cirrhotic cardiomyopathy; however, careful cardiac evaluation is necessary to rule out coronary artery disease and improve cardiac outcomes in the perioperative period. CONCLUSION: More data are needed on the new diagnostic criteria, molecular and biochemical changes, and repurposed drugs in cirrhotic cardiomyopathy. The use of advanced imaging techniques should be incorporated in clinical practice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa