Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.103
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2322592121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805280

RESUMO

In supercooled liquids, dynamical facilitation refers to a phenomenon where microscopic motion begets further motion nearby, resulting in spatially heterogeneous dynamics. This is central to the glassy relaxation dynamics of such liquids, which show super-Arrhenius growth of relaxation timescales with decreasing temperature. Despite the importance of dynamical facilitation, there is no theoretical understanding of how facilitation emerges and impacts relaxation dynamics. Here, we present a theory that explains the microscopic origins of dynamical facilitation. We show that dynamics proceeds by localized bond-exchange events, also known as excitations, resulting in the accumulation of elastic stresses with which new excitations can interact. At low temperatures, these elastic interactions dominate and facilitate the creation of new excitations near prior excitations. Using the theory of linear elasticity and Markov processes, we simulate a model, which reproduces multiple aspects of glassy dynamics observed in experiments and molecular simulations, including the stretched exponential decay of relaxation functions, the super-Arrhenius behavior of relaxation timescales as well as their two-dimensional finite-size effects. The model also predicts the subdiffusive behavior of the mean squared displacement (MSD) on short, intermediate timescales. Furthermore, we derive the phonon contributions to diffusion and relaxation, which when combined with the excitation contributions produce the two-step relaxation processes, and the ballistic-subdiffusive-diffusive crossover MSD behaviors commonly found in supercooled liquids.

2.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326038

RESUMO

There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.


Assuntos
Giro Denteado , Potenciação de Longa Duração , Masculino , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Estimulação Elétrica/métodos
3.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123091

RESUMO

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Proteínas de Membrana , Camundongos Knockout , Plasticidade Neuronal , Vesículas Sinápticas , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Plasticidade Neuronal/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Vesículas Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Hipocampo/metabolismo , Exocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
4.
Proc Natl Acad Sci U S A ; 119(40): e2210478119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161885

RESUMO

Two-trial learning in Aplysia reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT). Specifically, dual ERK phosphorylation at its activating TxY motif is accompanied by dephosphorylation at the pT position, leading to a buildup of inactive, singly phosphorylated pY-ERK. Phosphorylation and dephosphorylation occur concurrently but scale differently with varying 5HT concentrations, predicting that mixed two-trial protocols involving both "strong" and "weak" 5HT pulses should be sensitive to the precise order and timing of trials. Indeed, long-term synaptic facilitation is induced only when weak pulses precede strong, not vice versa. This may represent a physiological mechanism to prioritize memory of escalating threats.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Memória de Longo Prazo , Priming de Repetição , Serotonina , Animais , Aplysia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Memória de Longo Prazo/fisiologia , Optogenética , Fosforilação/genética , Priming de Repetição/fisiologia , Serotonina/farmacologia , Fatores de Tempo
5.
J Neurosci ; 43(22): 4005-4018, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185239

RESUMO

The composition of voltage-gated Ca2+ channel (Cav) subtypes that gate action potential (AP)-evoked release changes during the development of mammalian CNS synapses. Cav2.2 and Cav2.3 lose their function in gating-evoked release during postnatal synapse maturation. In mature boutons, Cav2.1 currents provide the almost exclusive trigger for evoked release, and Cav2.3 currents are required for the induction of presynaptic long-term potentiation. However, the functional significance of Cav2.2 remained elusive in mature boutons, although they remain present at active zones and continue contributing significantly to presynaptic Ca2+ influx. Here, we addressed the functional significance of Cav2.2 and Cav2.3 at mature parallel-fiber (PF) to Purkinje neuron synapses of mice of either sex. These synapses are known to exhibit the corresponding developmental Cav subtype changes in gating release. We addressed two hypotheses, namely that Cav2.2 and Cav2.3 are involved in triggering spontaneous glutamate release and that they are engaged in vesicle recruitment during repetitive evoked release. We found that spontaneous miniature release is Ca2+ dependent. However, experiments with Cav subtype-specific blockers excluded the spontaneous opening of Cavs as the Ca2+ source for spontaneous glutamate release. Thus, neither Cav2.2 nor Cav2.3 controls spontaneous release from PF boutons. Furthermore, vesicle recruitment during brief bursts of APs was also independent of Ca2+ influx through Cav2.2 and Cav2.3. However, Cav2.2, but not Cav2.3, currents significantly boosted vesicle recruitment during sustained high-frequency synaptic transmission. Thus, in mature PF boutons Cav2.2 channels are specifically required to sustain synaptic transmission during prolonged neuronal activity.SIGNIFICANCE STATEMENT At young CNS synapses, action potential-evoked release is gated via three subtypes of voltage-gated Ca2+ channels: Cav2.1, Cav2.2, and Cav2.3. During postnatal maturation, Cav2.2 and Cav2.3 lose their function in gating evoked release, such that at mature synapses Cav2.1 provides the almost exclusive source for triggering evoked release. Cav2.3 currents are required for the induction of presynaptic long-term potentiation. However, the function of the still abundant Cav2.2 in mature boutons remained largely elusive. Here, we studied mature cerebellar parallel-fiber synapses and found that Cav2.2 does not control spontaneous release. However, Ca2+ influx through Cav2.2 significantly boosted vesicle recruitment during trains of action potentials. Thus, Cav2.2 in mature parallel-fiber boutons participate in sustaining synaptic transmission during prolonged activity.


Assuntos
Canais de Cálcio Tipo N , Sinapses , Animais , Camundongos , Axônios/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo N/fisiologia , Mamíferos , Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
6.
J Physiol ; 602(14): 3255-3272, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837229

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disorder, characterised by progressive decline in skeletal muscle function due to the secondary consequences of dystrophin deficiency. Weakness extends to the respiratory musculature, and cardiorespiratory failure is the leading cause of death in men with DMD. Intermittent hypoxia has emerged as a potential therapy to counteract ventilatory insufficiency by eliciting long-term facilitation of breathing. Mechanisms of sensory and motor facilitation of breathing have been well delineated in animal models. Various paradigms of intermittent hypoxia have been designed and implemented in human trials culminating in clinical trials in people with spinal cord injury and amyotrophic lateral sclerosis. Application of therapeutic intermittent hypoxia to DMD is considered together with discussion of the potential barriers to progression owing to the complexity of this devastating disease. Notwithstanding the considerable challenges and potential pitfalls of intermittent hypoxia-based therapies for DMD, we suggest it is incumbent on the research community to explore the potential benefits in pre-clinical models. Intermittent hypoxia paradigms should be implemented to explore the proclivity to express respiratory plasticity with the longer-term aim of preserving and potentiating ventilation in pre-clinical models and people with DMD.


Assuntos
Hipóxia , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Humanos , Hipóxia/fisiopatologia , Animais , Respiração
7.
Ecol Lett ; 27(1): e14338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030225

RESUMO

Understanding the mechanisms underlying diversity-productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree-tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large-scale forest biodiversity experiment in subtropical China, we demonstrated that changes in individual tree productivity were driven by species-specific pairwise interactions, with higher positive net pairwise interaction effects on trees in more diverse neighbourhoods. By perturbing the interactions strength from empirical data in simulations, we revealed that the positive differences between inter- and intra-specific interactions were the critical determinant for the emergence of positive DPRs. Surprisingly, the condition for positive DPRs corresponded to the condition for coexistence. Our results thus provide a novel insight into how pairwise tree interactions regulate DPRs, with implications for identifying the tree mixtures with maximized productivity to guide forest restoration and reforestation efforts.


Assuntos
Florestas , Árvores , Árvores/fisiologia , Biodiversidade , China , Ecossistema
8.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577961

RESUMO

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Aquecimento Global , Mudança Climática , Clima
9.
Ecol Lett ; 27(2): e14376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361464

RESUMO

Species interactions are key drivers of biodiversity and ecosystem stability. Current theoretical frameworks for understanding the role of interactions make many assumptions which unfortunately, do not always hold in natural, diverse communities. This mismatch extends to annual plants, a common model system for studying coexistence, where interactions are typically averaged across environmental conditions and transitive competitive hierarchies are assumed to dominate. We quantify interaction networks for a community of annual wildflowers in Western Australia across a natural shade gradient at local scales. Whilst competition dominated, intraspecific and interspecific facilitation were widespread in all shade categories. Interaction strengths and directions varied substantially despite close spatial proximity and similar levels of local species richness, with most species interacting in different ways under different environmental conditions. Contrary to expectations, all networks were predominantly intransitive. These findings encourage us to rethink how we conceive of and categorize the mechanisms driving biodiversity in plant systems.


Assuntos
Ecossistema , Plantas , Biodiversidade
10.
Ecol Lett ; 27(5): e14428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685715

RESUMO

Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.


Assuntos
Ecossistema , Animais , Artrópodes/fisiologia , Modelos Biológicos , Plantas , Fatores de Tempo , Herbivoria , Comportamento Competitivo , Aptidão Genética
11.
Ecol Lett ; 27(2): e14391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400769

RESUMO

Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2 , across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favour warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.


Assuntos
Ecossistema , Plantas , Mudança Climática , Madeira , Temperatura
12.
J Neurophysiol ; 131(2): 216-224, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116608

RESUMO

Repeated hypoxic episodes can produce a sustained (>60 min) increase in neural drive to the diaphragm. The requirement of repeated hypoxic episodes (vs. a single episode) to produce phrenic motor facilitation (pMF) can be removed by allosteric modulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors using ampakines. We hypothesized that the ampakine-hypoxia interaction resulting in pMF requires that ampakine dosing precedes the onset of hypoxia. Phrenic nerve recordings were made from urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats during isocapnic conditions. Ampakine CX717 (15 mg/kg iv) was given immediately before (n = 8), during (n = 8), or immediately after (n = 8) a 5-min hypoxic episode (arterial oxygen partial pressure 40-45 mmHg). Ampakine before hypoxia (Aprior) resulted in a sustained increase in inspiratory phrenic burst amplitude (i.e., pMF) reaching +70 ± 21% above baseline (BL) after 60 min. This was considerably greater than corresponding values in the groups receiving ampakine during hypoxia (+28 ± 47% above BL, P = 0.005 vs. Aprior) or after hypoxia (+23 ± 40% above BL, P = 0.005 vs. Aprior). Phrenic inspiratory burst rate, heart rate, and systolic, diastolic, and mean arterial pressure (mmHg) were similar across the three treatment groups (all P > 0.3, treatment effect). We conclude that the presentation order of ampakine and hypoxia impacts the magnitude of pMF, with ampakine pretreatment evoking the strongest response. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY Phrenic motor facilitation (pMF) is evoked after repeated episodes of brief hypoxia. pMF can also be induced when an allosteric modulator of AMPA receptors (ampakine) is intravenously delivered immediately before a single brief hypoxic episode. Here we show that ampakine delivery before hypoxia (vs. during or after hypoxia) evokes the largest pMF with minimal impact on arterial blood pressure and heart rate. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.


Assuntos
Hipóxia , Uretana , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Anestésicos Intravenosos , Nervo Frênico/fisiologia
13.
J Neurophysiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015079

RESUMO

The effectiveness of activated Ia afferents to discharge ᵯC-motoneurons is decreased during passive muscle lengthening compared with static and shortening muscle conditions. Evidence suggests that these regulations are explained by (1) greater post-activation depression induced by homosynaptic post-activation depression (HPAD) and (2) primary afferent depolarization (PAD). It remains uncertain whether muscle length impacts the muscle lengthening-related aspect of regulation of the effectiveness of activated Ia afferents to discharge ᵯC-motoneurons, HPAD, PAD and heteronymous Ia facilitation (HF). We conducted a study involving 15 healthy young individuals. We recorded conditioned or non-conditioned soleus Hoffmann (H) reflex with electromyography (EMG) to estimate the effectiveness of activated Ia afferents to discharge ᵯC-motoneurons, HPAD, PAD and HF during passive lengthening, shortening and static muscle conditions at short, intermediate and long lengths. Our results show that the decrease of effectiveness of activated Ia afferents to discharge ᵯC-motoneurons and increase of post-activation depression during passive muscle lengthening occur at all muscle lengths. For PAD and HF, we found that longer muscle length increases the magnitude of regulation related to muscle lengthening. To conclude, our findings support an inhibitory effect (resulting from increased post-activation depression) of muscle lengthening and longer muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons. The increase in post-activation depression associated with muscle lengthening can be attributed to the amplification of Ia afferents discharge.

14.
Am Nat ; 204(2): 105-120, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008837

RESUMO

AbstractInteractions between and within abiotic and biotic processes generate nonadditive density-dependent effects on species performance that can vary in strength or direction across environments. If ignored, nonadditivities can lead to inaccurate predictions of species responses to environmental and compositional changes. While there are increasing empirical efforts to test the constancy of pairwise biotic interactions along environmental and compositional gradients, few assess both simultaneously. Using a nationwide forest inventory that spans broad ambient temperature and moisture gradients throughout New Zealand, we address this gap by analyzing the diameter growth of six focal tree species as a function of neighbor densities and climate, as well as neighbor × climate and neighbor × neighbor statistical interactions. The most complex model featuring all interaction terms had the highest predictive accuracy. Compared with climate variables, biotic interactions typically had stronger effects on diameter growth, especially when subjected to nonadditivities from local climatic conditions and the density of intermediary species. Furthermore, statistically strong (or weak) nonadditivities could be biologically irrelevant (or significant) depending on whether a species pair typically interacted under average or more extreme conditions. Our study highlights the importance of considering both the statistical potential and the biological relevance of nonadditive biotic interactions when assessing species performance under global change.


Assuntos
Floresta Úmida , Árvores , Árvores/crescimento & desenvolvimento , Nova Zelândia , Modelos Biológicos , Clima , Mudança Climática
15.
J Neurosci Res ; 102(3): e25306, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468573

RESUMO

Finasteride is used in female-pattern hair loss, hirsutism, and polycystic ovarian syndrome. It inhibits 5α-reductase, which is an important enzyme in the biosynthesis of neurosteroids. The effects of finasteride treatment on mental health in female patients as well as the effects of repeated/chronic finasteride administration in female rodents are still unknown. Accordingly, in our study, we administered finasteride (10, 30, or 100 mg/Kg, s.c.) for 6 days in female rats and evaluated behavior, plasma steroid levels, and synaptic plasticity. Depression-like behavior was evaluated using forced swim test (FST) and splash test. Anxiety-like behavior was evaluated using novelty-suppressed feeding task (NSFT), elevated plus maze (EPM), open field test (OFT), and light-dark test (LDT). Plasma steroid levels were assessed using ELISA and synaptic plasticity by field potential recordings. We observed that finasteride decreased total immobility duration in FST, indicating antidepressant-like effect and decreased the latency to first bite in NSFT, showing anxiolytic-like effect. We also found a significant increase in plasma estradiol and a significant decrease in plasma corticosterone level. Furthermore, field potential recordings showed that finasteride increased hippocampal long-term potentiation. These results indicate that repeated finasteride administration in female rats may have antidepressant- and anxiolytic-like effect, which might be mediated by enhanced estradiol levels or decreased corticosterone levels. Further studies are required to validate the molecular mechanisms underlying the effects of finasteride in female rats. Understanding the mechanisms will help us in developing novel neurosteroid-based therapeutics in the treatment of neuropsychiatric disorders in women.


Assuntos
Ansiolíticos , Finasterida , Humanos , Ratos , Feminino , Animais , Finasterida/efeitos adversos , Ansiolíticos/farmacologia , Corticosterona , Depressão/tratamento farmacológico , Esteroides , Estradiol , Antidepressivos/farmacologia , Plasticidade Neuronal
16.
New Phytol ; 241(3): 1074-1087, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984856

RESUMO

Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.


Assuntos
Biodiversidade , Cactaceae , Dispersão Vegetal , Temperatura , Plantas/genética , Clima Desértico
17.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105548

RESUMO

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Assuntos
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiologia , Fósforo/metabolismo , Oomicetos/fisiologia , Oomicetos/patogenicidade , Eucalyptus/microbiologia , Eucalyptus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/microbiologia , Simbiose/fisiologia , Especificidade da Espécie , Meio Ambiente
18.
New Phytol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165156

RESUMO

Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.

19.
Neuropsychol Rev ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319529

RESUMO

Semantic interference (SI) and phonological facilitation (PF) effects occur when multiple representations are co-activated simultaneously in complex naming paradigms, manipulating the context in which word production is set. Although the behavioral consequences of these psycholinguistic effects are well-known, the involved brain structures are still controversial. This paper aims to provide a systematic review and a coordinate-based meta-analysis of the available functional neuroimaging studies investigating SI and PF in picture naming paradigms. The included studies were fMRI experiments on healthy subjects, employing paradigms in which co-activations of representations were obtained by manipulating the naming context using semantically or phonologically related items. We examined the principal methodological aspects of the included studies, emphasizing the existing commonalities and discrepancies across single investigations. We then performed an exploratory coordinate-based meta-analysis of the reported activation peaks of neural response related to SI and PF. Our results consolidated previous findings regarding the involvement of the left inferior frontal gyrus and the left middle temporal gyrus in SI and brought out the role of bilateral inferior parietal regions in PF.

20.
Ann Bot ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136192

RESUMO

BACKGROUND AND AIMS: Pollination failure occurs from insufficient pollen quantity or quality. However, the relative contributions of pollen quantity vs quality to overall pollen limitation, and how this is affected by the co-flowering context, remain unknown for most plant populations. Here, we studied patterns of pollen deposition and pollen tube formation across populations of four predominately outcrossing species in the genus Clarkia to evaluate how richness of co-flowering congeners affects the contribution of pollen quantity and quality to pollen limitation. METHODS: We partition variation in pollen deposition and pollen tube production across individuals, populations and species to identify the main sources of variation in components of reproductive success. We further quantify the relative contribution of pollen quantity and quality limitation to the reproductive success of the four Clarkia species using piecewise regression analyses. Finally, we evaluate how variation in the number of co-flowering Clarkia species in the community affects the strength of pollen quality and quality limitation. RESULTS: Across all contexts, pollen deposition and the proportion of pollen tubes produced varied greatly among individuals, populations, and species, and these were not always correlated. For instance, C. xantiana received the smallest pollen loads yet produced the highest proportion of pollen tubes, while C. speciosa exhibited the opposite pattern. Yet, co-flowering richness had variable effects on the strength of pollen quantity and quality limitation among populations. Specifically, breakpoint values, which are an indicator of overall pollen limitation, were two times larger in the four-species community compared with one and two-species communities for two Clarkia species, suggesting that pollen limitation can increase with increasing richness of co-flowering congeners. CONCLUSIONS: Our results reveal a complex interplay between quantity and quality of pollen limitation and co-flowering context that may have different evolutionary outcomes across species and populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa