Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(3): e2557, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112752

RESUMO

A wide variety of organisms use the regular seasonal changes in photoperiod as a cue to align their life cycles with favorable conditions. Yet the phenological consequences of photoperiodism for organisms exposed to new climates are often overlooked. We present a conceptual approach and phenology model that maps voltinism (generations per year) and the degree of phenological mismatch that can arise when organisms with a short-day diapause response are introduced to new regions or are otherwise exposed to new climates. Our degree-day-based model combines continent-wide spatialized daily climate data, calculated date-specific and latitude-specific day lengths, and experimentally determined developmental responses to both photoperiod and temperature. Using the case of the knotweed psyllid Aphalara itadori, a new biological control agent being introduced from Japan to North America and Europe to control an invasive weed, we show how incorporating a short-day diapause response will result in geographic patterns of attempted voltinism that are strikingly different from the potential number of generations based on degree-days alone. The difference between the attempted and potential generations represents a quantitative measure of phenological mismatch between diapause timing and the end of the growing season. We conclude that insects moved from lower to higher latitudes (or to cooler climates) will tend to diapause too late, potentially resulting in high mortality from inclement weather, and those moved from higher to lower latitude (to warmer climates) may be prone to diapausing too early, therefore not fully exploiting the growing season and/or suffering from insufficient reserves for the longer duration in diapause. Mapped output reveals a central region with good phenology match that shifts north or south depending on the geographic source of the insect and its corresponding critical photoperiod for diapause. These results have direct relevance for efforts to establish populations of classical biocontrol agents. More generally, our approach and model could be applied to a wide variety of photoperiod- and temperature-sensitive organisms that are exposed to changes in climate, including resident and invasive agricultural pests and species of conservation concern.


Assuntos
Hemípteros , Fotoperíodo , Animais , Insetos , Estações do Ano , Temperatura
2.
New Phytol ; 204(3): 620-630, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25059468

RESUMO

Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.


Assuntos
Desnitrificação/fisiologia , Extratos Vegetais/química , Polygonaceae/metabolismo , Pseudomonas/efeitos dos fármacos , Aerobiose , Anaerobiose , Bioensaio , Espécies Introduzidas , Cinética , Estrutura Molecular , Consumo de Oxigênio , Plantas Daninhas , Pseudomonas/classificação , Pseudomonas/genética , Solo/química
3.
Environ Sci Pollut Res Int ; 29(44): 67390-67401, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35522409

RESUMO

Sustainable solutions aiming at limiting Reynoutria japonica invasion consist of frequent removal of its aerial biomass. The aims of this study were to measure the accumulation of metallic trace elements (MTE) in R. japonica, and to assess the eco-toxicological risk related to the valorization of the produced biomass. R. japonica fragmented rhizomes were regenerated in pots for 41 days on a control soil (CTL) or a moderately MTE-contaminated soil (POL, 3.6 mg Cd kg-1 DM). Growth traits were recorded, as well as MTE bioconcentration (BCF) and translocation factors (TF) from soil to plant organs. Whatever the MTE and plant organs, BCF remained below one (mean Cd-BCF for stem and leaf: 0.07 and 0.29 for CTL and POL, respectively), conversely to TF (until 2.2 for Cd and Ni in POL soil). When grown on the POL soil, R. japonica stem and leaf Cd content was close to the EU maximum regulatory limit for organic amendments or animal feed. Model simulations suggested that liver and kidney Cd concentrations would exceed the regulatory limit in food when adult cattle or sheep constantly ingest R. japonica grown on the POL soil over 200 to 800 days. The results of the present study will be useful to help managers in selecting efficient and safe solutions for the control of R. japonica invasion.


Assuntos
Poluentes do Solo , Oligoelementos , Animais , Biodegradação Ambiental , Biomassa , Cádmio , Bovinos , Reynoutria , Medição de Risco , Ovinos , Solo
4.
Sci Total Environ ; 763: 142995, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183824

RESUMO

Biotic and abiotic factors are important drivers of the introduction, dispersal and establishment of an invasive species in fluvial corridors. In this study, we propose to better understand the spatial distribution of Asian knotweeds and to model their invasibility at the river basin scale in the Rhône Mediterranean and Corsica regions, France. We implemented a multiscale analysis of biophysical and anthropogenic factors related to the presence of knotweeds. Subbasins were sampled (50-600 km2), a large dataset on knotweed occurrence and biotic/abiotic factors was collected, and logistic regression was applied. A robust logit model (accuracy: 90%; false positive rate: 13%) estimated the probability of the occurrence of knotweeds at the river basin scale. We found clear evidence of: i) spatial scale-dependent water availability for knotweed implantation (e.g., summer vs. winter rainfalls > 250 mm); ii) an important role of hydrogeomorphic forces in dispersal; and iii) interspecific competition in riparian areas. The occurrence of knotweeds is also closely related to human-derived pressures. The management of knotweeds on roads and railways in the vicinity of rivers may be a major source of propagules. Hydraulic infrastructures (dikes and mill weirs) may also have served as locations of knotweed introduction since the end of the nineteenth century and may play a major role in the propagule transfer of knotweed; to date, these infrastructures have provided favourable conditions for knotweed establishment. Despite local water authorities' increasing awareness of invasive plants, local management practices for flood mitigation, low awareness of roads/railway managers, and negative representations of knotweeds have probably largely contributed to their dispersion over decades. The final model intends to integrate these biophysical and human factors by providing an operational tool to help river managers determine the sensitivity of their river basins to knotweed invasion.

5.
Environ Sci Pollut Res Int ; 24(26): 20897-20907, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28721621

RESUMO

The expansion of invasive Japanese knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects was yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese knotweed s.l. (Fallopia japonica and Fallopia × bohemica) were grown during 1 and 3 months, in a soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after 3 months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; and (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia sp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.


Assuntos
Fallopia japonica/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Poluição Ambiental , Fallopia japonica/efeitos dos fármacos , Fallopia japonica/crescimento & desenvolvimento , Metais Pesados/análise , Solo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa