Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.819
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(7): 1692-1704.e11, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29779949

RESUMO

Heritability is essential for understanding the biological causes of disease but requires laborious patient recruitment and phenotype ascertainment. Electronic health records (EHRs) passively capture a wide range of clinically relevant data and provide a resource for studying the heritability of traits that are not typically accessible. EHRs contain next-of-kin information collected via patient emergency contact forms, but until now, these data have gone unused in research. We mined emergency contact data at three academic medical centers and identified 7.4 million familial relationships while maintaining patient privacy. Identified relationships were consistent with genetically derived relatedness. We used EHR data to compute heritability estimates for 500 disease phenotypes. Overall, estimates were consistent with the literature and between sites. Inconsistencies were indicative of limitations and opportunities unique to EHR research. These analyses provide a validation of the use of EHRs for genetics and disease research.


Assuntos
Registros Eletrônicos de Saúde , Doenças Genéticas Inatas/genética , Algoritmos , Bases de Dados Factuais , Relações Familiares , Doenças Genéticas Inatas/patologia , Genótipo , Humanos , Linhagem , Fenótipo , Característica Quantitativa Herdável
2.
Cell ; 169(7): 1228-1239.e10, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602350

RESUMO

ABCA1, an ATP-binding cassette (ABC) subfamily A exporter, mediates the cellular efflux of phospholipids and cholesterol to the extracellular acceptor apolipoprotein A-I (apoA-I) for generation of nascent high-density lipoprotein (HDL). Mutations of human ABCA1 are associated with Tangier disease and familial HDL deficiency. Here, we report the cryo-EM structure of human ABCA1 with nominal resolutions of 4.1 Å for the overall structure and 3.9 Å for the massive extracellular domain. The nucleotide-binding domains (NBDs) display a nucleotide-free state, while the two transmembrane domains (TMDs) contact each other through a narrow interface in the intracellular leaflet of the membrane. In addition to TMDs and NBDs, two extracellular domains of ABCA1 enclose an elongated hydrophobic tunnel. Structural mapping of dozens of disease-related mutations allows potential interpretation of their diverse pathogenic mechanisms. Structural-based analysis suggests a plausible "lateral access" mechanism for ABCA1-mediated lipid export that may be distinct from the conventional alternating-access paradigm.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Domínios Proteicos , Alinhamento de Sequência
3.
Immunol Rev ; 322(1): 259-282, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146057

RESUMO

From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Síndromes Periódicas Associadas à Criopirina/tratamento farmacológico , Síndromes Periódicas Associadas à Criopirina/patologia , Inflamassomos/metabolismo , Imunidade Inata , Inflamação , Interleucina-1beta/metabolismo
4.
Am J Hum Genet ; 111(3): 433-444, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38307026

RESUMO

We use the implementation science framework RE-AIM (reach, effectiveness, adoption, implementation, and maintenance) to describe outcomes of In Our DNA SC, a population-wide genomic screening (PWGS) program. In Our DNA SC involves participation through clinical appointments, community events, or at home collection. Participants provide a saliva sample that is sequenced by Helix, and those with a pathogenic variant or likely pathogenic variant for CDC Tier 1 conditions are offered free genetic counseling. We assessed key outcomes among the first cohort of individuals recruited. Over 14 months, 20,478 participants enrolled, and 14,053 samples were collected. The majority selected at-home sample collection followed by clinical sample collection and collection at community events. Participants were predominately female, White (self-identified), non-Hispanic, and between the ages of 40-49. Participants enrolled through community events were the most racially diverse and the youngest. Half of those enrolled completed the program. We identified 137 individuals with pathogenic or likely pathogenic variants for CDC Tier 1 conditions. The majority (77.4%) agreed to genetic counseling, and of those that agreed, 80.2% completed counseling. Twelve clinics participated, and we conducted 108 collection events. Participants enrolled at home were most likely to return their sample for sequencing. Through this evaluation, we identified facilitators and barriers to implementation of our state-wide PWGS program. Standardized reporting using implementation science frameworks can help generalize strategies and improve the impact of PWGS.


Assuntos
Aconselhamento Genético , Ciência da Implementação , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Genômica
5.
Traffic ; 25(3): e12932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528836

RESUMO

Alzheimer's disease is associated with increased levels of amyloid beta (Aß) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the ß-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aß secretion. A 20°C block in cargo exit from the Golgi confirmed ß- and γ-secretase processing of APPswe in the Golgi. Inhibition of the ß-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aß production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aß production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Suécia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Mutação
6.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506692

RESUMO

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Assuntos
Hiperlipoproteinemia Tipo II , Neoplasias , Humanos , Oregon/epidemiologia , Detecção Precoce de Câncer , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética
7.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723550

RESUMO

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Assuntos
Técnicas de Cultura de Células/métodos , Hematopoese , Macrófagos/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese
8.
Mol Cell ; 72(1): 127-139.e8, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244837

RESUMO

The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.


Assuntos
Reparo do DNA/genética , Reparo de DNA por Recombinação/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1 , Instabilidade Cromossômica/genética , Quebras de DNA de Cadeia Dupla , Feminino , Humanos , Camundongos , Mutação , Domínios Proteicos/genética
9.
Proc Natl Acad Sci U S A ; 120(32): e2221533120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527347

RESUMO

Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adulto , Adolescente , Humanos , Criança , Adulto Jovem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Fatores de Risco
10.
J Neurosci ; 44(37)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39138000

RESUMO

Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.


Assuntos
Disautonomia Familiar , Sistema Nervoso Entérico , Homeostase , Mucosa Intestinal , Animais , Sistema Nervoso Entérico/metabolismo , Disautonomia Familiar/genética , Disautonomia Familiar/patologia , Camundongos , Homeostase/genética , Masculino , Feminino , Humanos , Mucosa Intestinal/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Mutação , Fatores de Elongação da Transcrição , Peptídeos e Proteínas de Sinalização Intracelular
11.
Genet Epidemiol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472646

RESUMO

A polygenic risk score (PRS) combines the associations of multiple genetic variants that could be due to direct causal effects, indirect genetic effects, or other sources of familial confounding. We have developed new approaches to assess evidence for and against causation by using family data for pairs of relatives (Inference about Causation from Examination of FAmiliaL CONfounding [ICE FALCON]) or measures of family history (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses [ICE CRISTAL]). Inference is made from the changes in regression coefficients of relatives' PRSs or PRS and family history before and after adjusting for each other. We applied these approaches to two breast cancer PRSs and multiple studies and found that (a) for breast cancer diagnosed at a young age, for example, <50 years, there was no evidence that the PRSs were causal, while (b) for breast cancer diagnosed at later ages, there was consistent evidence for causation explaining increasing amounts of the PRS-disease association. The genetic variants in the PRS might be in linkage disequilibrium with truly causal variants and not causal themselves. These PRSs cause minimal heritability of breast cancer at younger ages. There is also evidence for nongenetic factors shared by first-degree relatives that explain breast cancer familial aggregation. Familial associations are not necessarily due to genes, and genetic associations are not necessarily causal.

12.
Genet Epidemiol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504141

RESUMO

Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.

13.
J Biol Chem ; 300(9): 107628, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098533

RESUMO

The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.

14.
J Biol Chem ; 300(4): 107137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447793

RESUMO

Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Transporte Axonal , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/genética , Axônios/metabolismo , Axônios/patologia , Complexo Dinactina/metabolismo , Complexo Dinactina/genética , Dineínas/metabolismo , Endossomos/metabolismo , Endossomos/genética , Lisossomos/metabolismo , Mutação , Variação Genética
15.
J Biol Chem ; 300(3): 105767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367672

RESUMO

Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.


Assuntos
Quinase do Ponto de Checagem 2 , Síndromes Neoplásicas Hereditárias , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/genética , Estudos Prospectivos , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Domínios Proteicos , Masculino , Feminino , Pessoa de Meia-Idade
16.
Circulation ; 150(4): 283-298, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38752340

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.


Assuntos
Sistemas CRISPR-Cas , Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Cadeias Pesadas de Miosina , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Camundongos , Humanos , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Alelos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Terapia Genética/métodos
17.
Circulation ; 149(5): 354-362, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850379

RESUMO

BACKGROUND: Homozygous familial hypercholesterolemia is a genetic disease characterized by extremely high levels of low-density lipoprotein cholesterol (LDL-C) and a high risk of premature cardiovascular events. The proof-of-concept study ORION-2 (A Study of Inclisiran in Participants With Homozygous Familial Hypercholesterolemia) showed that inclisiran, a small interfering RNA that prevents production of the hepatic PCSK9 protein (proprotein convertase subtilisin/kexin type 9), could lead to durable reductions in LDL-C levels when added to statins and ezetimibe in patients with homozygous familial hypercholesterolemia. METHODS: ORION-5 was a phase 3, 2-part, multicenter study in 56 patients with homozygous familial hypercholesterolemia and elevated LDL-C levels despite maximum tolerated doses of LDL-C-lowering therapies with or without lipoprotein apheresis. Patients eligible for part 1 (double-blind, 6 months) were randomized 2:1 to receive either 300 mg of inclisiran sodium (equivalent to 284 mg of inclisiran) or placebo. Placebo-treated patients from part 1 were transitioned to inclisiran in part 2 (open-label, 18 months). The primary end point was the percentage change in LDL-C levels from baseline to day 150. RESULTS: The mean age of the patients was 42.7 years, and 60.7% were women. The mean baseline LDL-C levels were 294.0 mg/dL and 356.7 mg/dL in the inclisiran and placebo groups, respectively. The placebo-corrected percentage change in LDL-C level from baseline to day 150 was -1.68% (95% CI, -29.19% to 25.83%; P=0.90), and the difference was not statistically significant between the inclisiran and placebo groups. The placebo-corrected percentage change in PCSK9 levels from baseline to day 150 was -60.6% with inclisiran treatment (P<0.0001); this was sustained throughout the study, confirming the effect of inclisiran on its biological target of PCSK9. No statistically significant differences between the inclisiran and placebo groups were observed in the levels of other lipids and lipoproteins (apolipoprotein B, total cholesterol, and non-high-density lipoprotein cholesterol). Adverse events and serious adverse events did not differ between the inclisiran and placebo groups throughout the study. CONCLUSIONS: Inclisiran treatment did not reduce LDL-C levels in patients with homozygous familial hypercholesterolemia despite substantial lowering of PCSK9 levels. Inclisiran was well-tolerated, and the safety findings were consistent with previously reported studies and the overall safety profile. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03851705.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Adulto , Masculino , Pró-Proteína Convertase 9/metabolismo , LDL-Colesterol , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , RNA Interferente Pequeno/efeitos adversos , Colesterol , Anticolesterolemiantes/efeitos adversos
18.
Circulation ; 149(5): 343-353, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-37860863

RESUMO

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder characterized by severely elevated low-density lipoprotein cholesterol (LDL-C) levels due to profoundly defective LDL receptor (LDLR) function. Given that severely elevated LDL-C starts in utero, atherosclerosis often presents during childhood or adolescence, creating a largely unmet need for aggressive LDLR-independent lipid-lowering therapies in young patients with HoFH. Here we present the first evaluation of the efficacy and safety of evinacumab, a novel LDLR-independent lipid-lowering therapy, in pediatric patients with HoFH from parts A and B of a 3-part study. METHODS: The phase 3, part B, open-label study treated 14 patients 5 to 11 years of age with genetically proven HoFH (true homozygotes and compound heterozygotes) with LDL-C >130 mg/dL, despite optimized lipid-lowering therapy (including LDLR-independent apheresis and lomitapide), with intravenous evinacumab 15 mg/kg every 4 weeks. RESULTS: Evinacumab treatment rapidly and durably (through week 24) decreased LDL-C with profound reduction in the first week, with a mean (SE) LDL-C reduction of -48.3% (10.4%) from baseline to week 24. ApoB (mean [SE], -41.3% [9.0%]), non-high-density lipoprotein cholesterol (-48.9% [9.8%]), and total cholesterol (-49.1% [8.1%]) were similarly decreased. Treatment-emergent adverse events were reported in 10 (71.4%) patients; however, only 2 (14.3%) reported events that were considered to be treatment-related (nausea and abdominal pain). One serious treatment-emergent adverse event of tonsillitis occurred (n=1), but this was not considered treatment-related. CONCLUSIONS: Evinacumab constitutes a new treatment for pediatric patients with HoFH and inadequately controlled LDL-C despite optimized lipid-lowering therapy, lowering LDL-C levels by nearly half in these extremely high-risk and difficult-to-treat individuals. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04233918.


Assuntos
Anticorpos Monoclonais , Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Hiperlipoproteinemia Tipo II , Adolescente , Humanos , Criança , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Anticolesterolemiantes/efeitos adversos , Homozigoto
19.
Circulation ; 150(9): 724-735, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39186530

RESUMO

Familial hypercholesterolemia (FH) is a genetic disease that leads to elevated low-density lipoprotein cholesterol levels and risk of coronary heart disease. Current therapeutic options for FH remain relatively limited and only partially effective in both lowering low-density lipoprotein cholesterol and modifying coronary heart disease risk. The unique characteristics of nucleic acid therapies to target the underlying cause of the disease can offer solutions unachievable with conventional medications. DNA- and RNA-based therapeutics have the potential to transform the care of patients with FH. Recent advances are overcoming obstacles to clinical translation of nucleic acid-based medications, including greater stability of the formulations as well as site-specific delivery, making gene-based therapy for FH an alternative approach for treatment of FH.


Assuntos
Terapia Genética , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Terapia Genética/métodos , Animais , LDL-Colesterol/sangue
20.
Am J Hum Genet ; 109(8): 1534-1548, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35905737

RESUMO

Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.


Assuntos
Disautonomia Familiar , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Disautonomia Familiar/genética , Éxons/genética , Humanos , Camundongos , Doenças Neurodegenerativas/genética , Precursores de RNA/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa