Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neurol Sci ; 44(12): 4359-4362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37410270

RESUMO

BACKGROUND: NBIA (neurodegeneration with brain iron accumulation) is a diverse collection of neurodegenerative illnesses defined by iron accumulation in the basal ganglia. The fatty acid hydroxylase-associated neurodegeneration, or FAHN, is one of the uncommon subtypes of NBIAs, associated with inherited autosomal recessive mutations in gene coding the membrane-bound fatty acid 2 hydroxylase (FA2H) enzyme. CASES: Here, we report two cases with FAHN from two unrelated families from Iran confirmed by whole exome sequencing. CONCLUSION: FAHN is an uncommon variant of NBIA that may manifest as spastic paraparesis without signs of iron buildup on brain imaging. As a result, it should be taken into account while making a differential diagnosis of the hereditary spastic paraplegia (HSP) syndrome, especially in individuals who lack iron deposits.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Neurodegeneração Associada a Pantotenato-Quinase , Paraplegia Espástica Hereditária , Humanos , Encéfalo/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Irã (Geográfico) , Ferro , Mutação/genética , Neurodegeneração Associada a Pantotenato-Quinase/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902339

RESUMO

Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.


Assuntos
Oxigenases de Função Mista , Doenças Neurodegenerativas , Esfingolipídeos , Humanos , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/metabolismo , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/metabolismo , Esfingolipídeos/metabolismo
3.
Asian-Australas J Anim Sci ; 33(3): 416-423, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31480135

RESUMO

OBJECTIVE: This study examined the effects of divergence in residual feed intake (RFI) on expression profiles of key genes related to lipid transport in the liver and duodenal epithelium and their associations with feed efficiency traits in meat-type ducks. METHODS: A total of 1,000 male ducks with similar body weight (1,042.1±87.2 g) were used in this study, and their individual RFI was calculated from 21 to 42 d of age. Finally, the 10 highest RFI (HRFI) and 10 lowest RFI (LRFI) ducks were chosen for examining the expression of key genes related to lipid transport in the liver and duodenal epithelium using quantitative polymerase chain reaction. RESULTS: In the liver, expression levels of albumin (ALB), CD36 molecule (CD36), fatty acid hydroxylase domain containing 2 (FAXDC2), and choline kinase alpha (CHKA) were significantly higher in LRFI ducks than in HRFI ducks (p<0.01); negative correlations (p<0.05) between expression levels of ALB, CD36, FAXDC2, and CHKA and RFI were detected in the liver. Additionally, ALB expression was strongly positively correlated (p<0.05) with CD36, FAXDC2, CHKA, and apolipoprotein H (APOH) expression in the liver. In duodenal epithelium, we found that mRNA levels of ALB, CD36, FAXDC2, and APOH were significantly higher in LRFI ducks than in HRFI ducks (p<0.01); RFI was strongly negatively correlated (p<0.05) with ALB, FAXDC2, and APOH expression, while ALB expression was strongly positively correlated with APOH expression (p<0.01) in duodenal epithelium. Furthermore, expression levels of both ALB and FAXDC2 genes were significantly associated with feed conversion ratio and RFI in both liver and duodenal epithelium (p<0.05). CONCLUSION: Our findings therefore suggest that ALB and FAXDC2 genes might be used as potential gene markers designed to improve feed efficiency in future meat-type duck breeding programs.

4.
J Biol Chem ; 293(20): 7727-7736, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29618513

RESUMO

The cytochrome P450 enzyme CYP102A1 from Bacillus megaterium is a highly efficient hydroxylase of fatty acids, and there is a significant interest in using CYP102A1 for biotechnological applications. Here, we used size-exclusion chromatography-multiangle light scattering (SEC-MALS) analysis and negative-stain EM to investigate the molecular architecture of CYP102A1. The SEC-MALS analysis yielded a homogeneous peak with an average molecular mass of 235 ± 5 kDa, consistent with homodimeric CYP102A1. The negative-stain EM of dimeric CYP102A1 revealed four distinct lobes, representing the two heme and two reductase domains. Two of the lobes were in close contact, whereas the other two were often observed apart and at the ends of a U-shaped configuration. The overall dimension of the dimer was ∼130 Å. To determine the identity of the lobes, we FLAG-tagged the N or C terminus of CYP102A1 to visualize additional densities in EM and found that anti-FLAG Fab could bind only the N-tagged P450. Single-particle analysis of this anti-Flag Fab-CYP102A1 complex revealed additional density in the N-terminally tagged heme domains, indicating that the heme domains appear flexible, whereas the reductase domains remain tightly associated. The effects of truncation on CYP102A1 dimerization, identification of cross-linked sites by peptide mapping, and molecular modeling results all were consistent with the dimerization of the reductase domain. We conclude that functional CYP102A1 is a compact globular protein dimerized at its reductase domains, with its heme domains exhibiting multiple conformations that likely contribute to the highly efficient catalysis of CYP102A1.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredutases/metabolismo , Multimerização Proteica , Proteínas de Bactérias/química , Catálise , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Transporte de Elétrons , Heme/química , Modelos Moleculares , Simulação de Dinâmica Molecular , NADPH-Ferri-Hemoproteína Redutase/química , Oxirredutases/química , Conformação Proteica
5.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505900

RESUMO

Seed storability, defined as the ability to remain alive during storage, is an important agronomic and physiological characteristic, but the underlying genetic mechanism remains largely unclear. Here, we report quantitative trait loci (QTLs) analyses for seed storability using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that was derived from a cross of a japonica cultivar, Nipponbare, and an indica cultivar, 9311. Seven putative QTLs were identified for seed storability under natural storage, each explaining 3.6-9.0% of the phenotypic variation in this population. Among these QTLs, qSS1 with the 9311 alleles promoting seed storability was further validated in near-isogenic line and its derived-F2 population. The other locus (qSS3.1) for seed storability colocalized with a locus for germination ability under hydrogen peroxide, which is recognized as an oxidant molecule that causes lipid damage. Transgenic experiments validated that a candidate gene (OsFAH2) resides the qSS3.1 region controlling seed storability and antioxidant capability. Overexpression of OsFAH2 that encodes a fatty acid hydroxylase reduced lipid preoxidation and increased seed storability. These findings provide new insights into the genetic and physiological bases of seed storability and will be useful for the improvement of seed storability in rice.


Assuntos
Antioxidantes , Genes de Plantas , Oryza/genética , Característica Quantitativa Herdável , Sementes/genética , Peroxidação de Lipídeos/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oryza/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/metabolismo
6.
J Lipid Res ; 58(3): 529-542, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28082410

RESUMO

Rat spermatogenic cells contain sphingomyelins (SMs) and ceramides (Cers) with very long-chain PUFAs (VLCPUFAs) in nonhydroxylated (n-V) and 2-hydroxylated (h-V) forms. How these atypical species distribute among membrane fractions during differentiation was investigated here using a detergent-free procedure to isolate a small light raft-like low-density fraction and a large heavy fraction, mostly derived from the plasma membrane of spermatocytes, round spermatids, and late spermatids. The light fraction contained cholesterol, glycerophospholipids (GPLs), and SM with the same saturated fatty acids in all three stages. In the heavy fraction, as PUFA increased in the GPL and VLCPUFA in SM from spermatocytes to spermatids, the concentration of cholesterol was also augmented. The heavy fraction had mostly n-V SM in spermatocytes, but accumulated h-V SM and h-V Cer in spermatids. A fraction containing intracellular membranes had less SM and more Cer than the latter, but in both fractions SM and Cer species with h-V increased over species with n-V with differentiation. This accretion of h-V was consistent with the differentiation-dependent expression of fatty acid 2-hydroxylase (Fa2h), as it increased significantly from spermatocytes to spermatids. The non-raft region of the plasma membrane is thus the main target of the dynamic lipid synthesis and remodeling that is involved in germ cell differentiation.


Assuntos
Ceramidas/metabolismo , Colesterol/metabolismo , Ácidos Graxos Insaturados/metabolismo , Esfingomielinas/metabolismo , Animais , Diferenciação Celular/genética , Glicerofosfolipídeos/metabolismo , Masculino , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Ratos , Espermátides/crescimento & desenvolvimento , Espermátides/metabolismo , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
7.
Mol Phylogenet Evol ; 114: 1-13, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28559213

RESUMO

The Integral Membrane Histidine Motif-containing Enzymes (IMHME) are a class of binuclear non-heme iron proteins widely distributed among prokaryotes and eukaryotes. They are characterized by a conserved tripartite motif consisting of eight to ten histidine residues. Their known function is the activation of the dioxygen moiety to serve as efficient catalysts for reactions of hydroxylation, desaturation or reduction. To date most studies on IMHME were carried out in metazoan, phototrophic or parasitic organisms, whereas genome-wide analysis in heterotrophic free living protozoa, such as the Ciliophora phylum, has not been undertaken. In the seven fully sequenced genomes available we retrieved 118 putative sequences of the IMHME type, albeit with large differences in number among the ciliates: 11 sequences in Euplotes octocarinatus, 7 in Ichthyophthirius multifiliis, 13 in Oxytricha trifallax, 18 in Stylonychia lemnae, 25 in Tetrahymena thermophila, 31 in Paramecium tetraurelia and 13 in Pseudocohnilembus persalinus. The pool of putative sequences was classified in 16 orthologous groups from which 11 were related to fatty acid desaturase (FAD) and 5 to the fatty acid hydroxylase (FAH) superfamilies. Noteworthy, a large diversity on the number and type of FAD / FAH proteins were found among the ciliates, a feature that, in principle, may be attributed to peculiarities of the evolutionary process, such as gene expansion and reduction, but also to horizontal gene transfer, as we demonstrate in this work. We identified twelve putative enzymatic activities, from which four were newly assigned activities: sphingolipid Δ4-desaturase, ω3/Δ15 fatty acid desaturase, a large group of alkane 1-monooxygenases, and acylamide-delta-3(E)-desaturase, although unequivocal allocation would require additional experiments. We also combined the phylogenetics analysis with lipids analysis, thereby allowing the detection of two enzymatic activities not previously reported: a C-5 sterol desaturase in P. tetraurelia and a delta-9 fatty acid desaturase in Cohnilembus reniformis. The analysis revealed a significant lower number of FAD's sequences in the spirotrichea ciliates than in the oligohymenophorea, emphasizing the importance of fatty acids trophic transfer among aquatic organisms as a source of variation in metabolic activity, individual and population growth rates, and reproduction.


Assuntos
Cilióforos/classificação , Evolução Molecular , Ácidos Graxos Dessaturases/classificação , Motivos de Aminoácidos , Sequência de Bases , Cilióforos/enzimologia , Cilióforos/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Genômica , Histidina/química , Oxirredutases/classificação , Oxirredutases/genética , Filogenia , Estearoil-CoA Dessaturase/classificação , Estearoil-CoA Dessaturase/genética
8.
J Lipid Res ; 56(11): 2102-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26323290

RESUMO

Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.


Assuntos
Pichia/metabolismo , Ácidos Ricinoleicos/metabolismo , Reatores Biológicos , Claviceps/enzimologia , Claviceps/genética , Diacilglicerol O-Aciltransferase/biossíntese , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos Dessaturases/biossíntese , Ácidos Graxos Dessaturases/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Metabolismo dos Lipídeos , Engenharia Metabólica , Filogenia , Pichia/genética
9.
Clin Genet ; 87(1): 85-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24359114

RESUMO

Hereditary spastic paraplegias (HSPs) encompass a clinically and genetically heterogeneous group of neurodegenerative disorders. Recently, mutations in fatty acid 2-hydroxylase gene (FA2H) have been identified responsible for HSPs type 35 (SPG35). This study aims to define the contribution of FA2H to Chinese autosomal recessive HSP (AR-HSP) patients and provide insights into the enzymatic functions of the novel mutations. Direct sequencing of FA2H was conducted in 31 AR-HSP families and 55 sporadic cases without SPG11, SPG15, SPG5 and SPG7 gene mutations. Enzymatic activity of the mutated proteins was further examined. Three novel mutations were found in two Chinese families, including two compound heterozygous mutations (c.388C>T/p.L130F and c.506+6C>G) and one homozygous mutation (c.230T>G/p.L77R). The c.506+6C>G splice-site mutation led to the deletion of exon 3. Measurement of enzymatic functions revealed a significant reduction in the enzymatic activity of FA2H associated with p.L130F and p.L77R. Overall, our data widens the spectrum of the mutations on FA2H, and functional analyses indicate that these mutations severely impair the enzymatic activity of FA2H. Furthermore, frequency analysis shows that SPG35 is the second most common subtype of AR-HSP in China.


Assuntos
Encéfalo/patologia , Oxigenases de Função Mista/genética , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/patologia , Adolescente , Adulto , Sequência de Bases , China , Evolução Fatal , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Mutação Puntual/genética , Sítios de Splice de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Paraplegia Espástica Hereditária/classificação
10.
mBio ; 15(2): e0201523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38197633

RESUMO

SCS7 is a fatty acid 2-hydroxylase required for the synthesis of inositol phosphorylceramide but is not essential for normal growth in Saccharomyces cerevisiae. Here, we demonstrate that the Colletotrichum siamense SCS7 homolog CsSCS7 plays a key role in hyphal growth. The CsSCS7 deletion mutant showed strong hyphal growth inhibition, small conidia, and marginally reduced sporulation and also resulted in a sharp reduction in the full virulence and increasing the fungicide sensitivity. The three protein domains (a cytochrome b5 domain, a transmembrane domain, and a hydroxylase domain) are important to CsSCS7 protein function in hyphal growth. The fatty acid assay results revealed that the CsSCS7 gene is important for balancing the contents of multiple mid-long- and short-chain fatty acids. Additionally, the retarded growth and virulence of C. siamense ΔCsSCS7 can be recovered partly by the reintroduction of homologous sequences from Magnaporthe oryzae and Fusarium graminearum but not SCS7 of S. cerevisiae. In addition, the spraying of C. siamense with naked CsSCS7-double-stranded RNA (dsRNAs), which leads to RNAi, increases the inhibition of hyphal growth and slightly decreases disease lesions. Then, we used nano material Mg-Al-layered double hydroxide as carriers to deliver dsRNA, which significantly enhanced the control effect of dsRNA, and the lesion area was obviously reduced. These data indicated that CsSCS7 is an important factor for hyphal growth and affects virulence and may be a potential control target in C. siamense and even in filamentous plant pathogenic fungi.IMPORTANCECsSCS7, which is homologous to yeast fatty acid 2-hydroxylase SCS7, was confirmed to play a key role in the hyphal growth of Colletotrichum siamense and affect its virulence. The CsSCS7 gene is involved in the synthesis and metabolism of fatty acids. Homologs from the filamentous fungi Magnaporthe oryzae and Fusarium graminearum can recover the retarded growth and virulence of C. siamense ΔCsSCS7. The spraying of double-stranded RNAs targeting CsSCS7 can inhibit hyphal growth and reduce the disease lesion area to some extent. After using nano material Mg-Al layered double hydroxide as carrier, the inhibition rates were significantly increased. We demonstrated that CsSCS7 is an important factor for hyphal growth and affects virulence and may be a potential control target in C. siamense and even in filamentous plant pathogenic fungi.


Assuntos
Ascomicetos , Colletotrichum , Proteínas Fúngicas , Fusarium , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/metabolismo , Colletotrichum/genética , Oxigenases de Função Mista/genética , Ácidos Graxos , Hidróxidos , Peptídeos e Proteínas de Sinalização Intercelular
11.
Exp Ther Med ; 27(1): 27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125362

RESUMO

The reprogramming of lipid metabolism serves an important role in occurrence and development of liver cancer. Fatty acid hydroxylase domain containing 2 (FAXDC2) is a hydroxylase involved in the synthesis of cholesterol and sphingomyelin and downregulated in various types of cancer. There are no reports on the relationship between FAXDC2 and liver carcinogenesis. The present study used multiple portals and publicly available tools to explore its correlation with liver cancer. The results showed that the expression of FAXDC2 decreased in liver cancer and the methylation level near the promoter increased. Patients with liver cancer and with low expression of FAXDC2 had a poor prognosis. Gain of function and loss of function strategies were performed to evaluate its roles in liver cancer cells. CCK-8 assay showed that overexpression of FAXDC2 inhibited the viability of liver cancer cells (HepG2). Flow cytometry analysis indicated that HepG2 cells with overexpressing FAXDC2 showed an S phase arrest, associated with cyclin-dependent kinase 2 decreased. Transwell experiments showed that increasing FAXDC2 inhibited HepG2 cell invasion ability, accompanied by the upregulation of E-cadherin. Notably, knockdown of FAXDC2 had no significant effect on cell cycle and invasion functions. Based on the cBioPortal platform, FAXDC2 was predicted to closely correlate to the ERK signal in tumorigenesis. Western blotting results showed that overexpression of FAXDC2 decreased the phosphorylation level of ERK in liver cancer cells. The present study first identified FAXDC2 as a liver cancer suppressor, which might inhibit the proliferation and invasion of liver cancer cells through the mechanism associated with ERK signaling. The present study provided a possible new target for the diagnosis and treatment of liver cancer.

12.
Front Cell Dev Biol ; 10: 1000553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589738

RESUMO

Fatty acid hydroxylase-associated neurodegeneration (FAHN) is a rare disease that exhibits brain modifications and motor dysfunctions in early childhood. The condition is caused by a homozygous or compound heterozygous mutation in fatty acid 2 hydroxylase (FA2H), whose encoded protein synthesizes 2-hydroxysphingolipids and 2-hydroxyglycosphingolipids and is therefore involved in sphingolipid metabolism. A few FAHN model organisms have already been established and give the first insight into symptomatic effects. However, they fail to establish the underlying cellular mechanism of FAHN so far. Drosophila is an excellent model for many neurodegenerative disorders; hence, here, we have characterized and validated the first FAHN Drosophila model. The investigation of loss of dfa2h lines revealed behavioral abnormalities, including motor impairment and flying disability, in addition to a shortened lifespan. Furthermore, alterations in mitochondrial dynamics, and autophagy were identified. Analyses of patient-derived fibroblasts, and rescue experiments with human FA2H, indicated that these defects are evolutionarily conserved. We thus present a FAHN Drosophila model organism that provides new insights into the cellular mechanism of FAHN.

13.
Brain Dev ; 42(2): 217-221, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837835

RESUMO

FA2H encodes fatty acid 2-hydroxylase, which plays a significant role in maintaining the neuronal myelin sheath. Previous reports have revealed that a FA2H mutation leads to spastic paraplegia, leukodystrophy, and neurodegeneration with brain iron accumulation, collectively referred to as fatty acid hydroxylase-associated neurodegeneration (FAHN). The disease severity of FAHN varies among individual patients and may be explained by the enzyme activity of FA2H mutant proteins. Here we report a 10-year-old Japanese boy with FAHN having novel heterozygous mutations in FA2H. The patient presented with a spastic gait since the age of 5 years and was unable to walk without a cane by the time he was 8 years old. Brain MRI demonstrated a partial thinning of the corpus callosum, slight reduction of cerebellar volume, and posterior dominant periventricular leukodystrophy. Whole exome sequencing revealed two novel missense mutations in FA2H with compound heterozygous inheritance (NM_024306, p.Val149Leu, and p.His260Gln mutations). The enzyme activities of the p.Val149Leu and p.His260Gln variants were 60%-80% and almost 0%, respectively. Our cell-based enzyme assay demonstrated partial functionality for one of the variants, indicating a milder phenotype. However, considered along with previous reports, there was no definite relationship between the disease severity and residual enzyme activity measured using a similar method. Further research is needed to precisely predict the phenotypic severity of this disorder.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/genética , Oxigenases de Função Mista/genética , Encéfalo/metabolismo , Criança , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Marcha/genética , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Heterozigoto , Humanos , Japão , Imageamento por Ressonância Magnética , Masculino , Oxigenases de Função Mista/metabolismo , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
15.
Drug Metab Pharmacokinet ; 31(6): 445-450, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27793475

RESUMO

Human CYP4A11 is the major ω-hydroxylase of fatty acids in the liver and kidneys. It produces 20-hydroxyeicosatetraenoic acid as well as hydroxylates fatty acids. In this study, we investigated the biochemical properties of three alleles of CYP4A11: W126R, K276T, and S353G. Site-directed mutagenesis of the wild type CYP4A11 was performed, to construct the W126R, K276T, and S353G variant clones. The CYP4A11 wild type and variant constructs were heterologously expressed in Escherichia coli. CO-binding spectra showed the expression of the wild type, K276T and S353G variants, indicating the functional P450 holoenzyme. The W126R variant was not expressed in E. coli. Binding affinities of lauric acid in K276T and S353G variants were stronger than that of wild type. Steady-state kinetics in the hydroxylation reaction of fatty acids were studied. The catalytic efficiencies (kcat/Km) of K276T and S353G variants in the reactions without cytochrome b5 were approximately 2- and 4-fold higher, respectively, than that of wild type, and in the reactions with cytochrome b5 they were approximately 2- and 3-fold higher, respectively. These results suggest that individuals carrying the alleles, K276T and S353G, might exhibit higher catalysis of CYP4A11, which may affect the endogenous metabolic products associated with regulation of blood pressure.


Assuntos
Alelos , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Biocatálise , Citocromo P-450 CYP4A/química , Citocromo P-450 CYP4A/isolamento & purificação , Ácidos Graxos/metabolismo , Humanos , Hidroxilação , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Plant Physiol Biochem ; 75: 114-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24429134

RESUMO

Mining of an EST sequence collection representing genes expressed during seed development in Physaria fendleri identified abundant sequences encoding apparent homologues of the Arabidopsis oleate 12-desaturase (AtFAD2 At3g12120). Of the 62 sequenced clones, 59 were identified as encoding the previously characterized bifunctional oleate 12-hydroxylase/desaturase (LFAH12/PfFAH12). The remaining 3 clones encoded a second FAD2 homologue. Isolation of a full length ORF and heterologous expression in yeast revealed that this sequence, designated PfFAD2, is the first full length sequence from any Physaria species that encodes an oleate 12-desaturase. PfFAD2 was expressed in both leaf and developing seed with activity on palmitate (16:1(Δ9)) and oleate (18:1(Δ9)). Sequence comparison revealed that PfFAD2 shares 93% amino acid identity with Arabidopsis FAD2 and only 84% identity with PfFAH12. By comparison of EST and genomic sequences it was revealed that the PfFAD2 gene encodes a transcript with a single intron of 1120 bp in the 5'-untranslated region (5'UTR). A short intron, 81 bp in length, was also discovered in the 5'UTR of the PfFAH12 gene, 16 bp upstream of the translation initiation codon. In silico examination of FAD2 like genes from the genome of castor (Ricinus communis) identified putative 5'UTR introns in genes encoding the castor oleate 12-desaturase (RcFAD2) and oleate 12-hydroxylase (CFAH12). By sequencing of genomic DNA the presence of single 5'UTR introns in each gene, and the size of these introns, was confirmed. These findings suggest that 5'UTR introns may be a characteristic feature of FAD2 genes and also of divergent FAD2 genes encoding fatty acid modifying enzymes, and that the selection pressure maintaining these introns is very different.


Assuntos
Regiões 5' não Traduzidas , Brassicaceae/genética , Ácidos Graxos Dessaturases/genética , Genes de Plantas , Íntrons , Ácido Oleico/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Brassicaceae/metabolismo , Códon de Iniciação , Etiquetas de Sequências Expressas , Ácidos Graxos Dessaturases/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Ácido Oleico/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ricinus/genética , Ricinus/metabolismo , Sementes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência
17.
Bioinformation ; 5(3): 104-12, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21364789

RESUMO

UNLABELLED: It is well known that the nutritional quality of the American oil-palm (Elaeis oleifera) mesocarp oil is superior to that of African oil-palm (Elaeis guineensis Jacq. Tenera) mesocarp oil. Therefore, it is of important to identify the genetic features for its superior value. This could be achieved through the genome sequencing of the oil-palm. However, the genome sequence is not available in the public domain due to commercial secrecy. Hence, we constructed a cDNA library and generated expressed sequence tags (3,205) from the mesocarp tissue of the American oil-palm. We continued to annotate each of these cDNAs after submitting to GenBank/DDBJ/EMBL. A rough analysis turned our attention to the beta-carotene hydroxylase (Chyb) enzyme encoding cDNA. Then, we completed the full sequencing of cDNA clone for its both strands using M13 forward and reverse primers. The full nucleotide and protein sequence was further analyzed and annotated using various Bioinformatics tools. The analysis results showed the presence of fatty acid hydroxylase superfamily domain in the protein sequence. The multiple sequence alignment of selected Chyb amino acid sequences from other plant species and algal members with E. oleifera Chyb using ClustalW and its phylogenetic analysis suggest that Chyb from monocotyledonous plant species, Lilium hubrid, Crocus sativus and Zea mays are the most evolutionary related with E. oleifera Chyb. This study reports the annotation of E. oleifera Chyb. ABBREVIATIONS: ESTs - expressed sequence tags, EoChyb - Elaeis oleifera beta-carotene hydroxylase, MC - main cluster.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa