Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(23): 12943-12951, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461366

RESUMO

The IgG Fc domain has the capacity to interact with diverse types of receptors, including the neonatal Fc receptor (FcRn) and Fcγ receptors (FcγRs), which confer pleiotropic biological activities. Whereas FcRn regulates IgG epithelial transport and recycling, Fc effector activities, such as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, are mediated by FcγRs, which upon cross-linking transduce signals that modulate the function of effector leukocytes. Despite the well-defined and nonoverlapping functional properties of FcRn and FcγRs, recent studies have suggested that FcγRs mediate transplacental IgG transport, as certain Fc glycoforms were reported to be enriched in fetal circulation. To determine the contribution of FcγRs and FcRn to the maternal-fetal transport of IgG, we characterized the IgG Fc glycosylation in paired maternal-fetal samples from patient cohorts from Uganda and Nicaragua. No differences in IgG1 Fc glycan profiles and minimal differences in IgG2 Fc glycans were noted, whereas the presence or absence of galactose on the Fc glycan of IgG1 did not alter FcγRIIIa or FcRn binding, half-life, or their ability to deplete target cells in FcγR/FcRn humanized mice. Modeling maternal-fetal transport in FcγR/FcRn humanized mice confirmed that only FcRn contributed to transplacental transport of IgG; IgG selectively enhanced for FcRn binding resulted in enhanced accumulation of maternal antibody in the fetus. In contrast, enhancing FcγRIIIa binding did not result in enhanced maternal-fetal transport. These results argue against a role for FcγRs in IgG transplacental transport, suggesting Fc engineering of maternally administered antibody to enhance only FcRn binding as a means to improve maternal-fetal transport of IgG.


Assuntos
Sangue Fetal/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Troca Materno-Fetal/imunologia , Circulação Placentária/imunologia , Receptores Fc/metabolismo , Animais , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Transgênicos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Fc/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(14): 7981-7989, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209664

RESUMO

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Complicações Infecciosas na Gravidez/prevenção & controle , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Feto/imunologia , Feto/virologia , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Engenharia de Proteínas , RNA Viral/isolamento & purificação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
3.
Annu Rev Med ; 70: 437-450, 2019 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-30379598

RESUMO

Bispecific antibodies that recruit and redirect T cells to attack tumor cells have tremendous potential for the treatment of various malignancies. In general, this class of therapeutics, known as CD3 bispecifics, promotes tumor cell killing by cross-linking a CD3 component of the T cell receptor complex with a tumor-associated antigen on the surface of the target cell. Importantly, this mechanism does not rely on a cognate interaction between the T cell receptor and a peptide:HLA complex, thereby circumventing HLA (human leukocyte antigen) restriction. Hence, CD3 bispecifics may find a key role in addressing tumors with low neoantigen content and/or low inflammation, and this class of therapeutics may productively combine with checkpoint blockade. A wide array of formats and optimization approaches has been developed, and a wave of CD3 bispecifics is proceeding into human clinical trials for a range of indications, with promising signs of therapeutic activity.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias/imunologia , Complexo CD3/administração & dosagem , Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Previsões , Humanos , Imunoterapia/tendências , Neoplasias/imunologia , Medição de Risco , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento
4.
Biotechnol Bioeng ; 118(2): 809-822, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107976

RESUMO

In this study, the binding of multimodal chromatographic ligands to the IgG1 FC domain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated 15 N-labeled FC domain indicated that while single-mode ion exchange ligands interacted very weakly throughout the FC surface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the FC . The multimodal ligand-binding sites on the FC were concentrated in the hinge region and near the interface of the CH 2 and CH 3 domains. Furthermore, the multimodal binding sites were primarily composed of positively charged, polar, and aliphatic residues in these regions, with histidine residues exhibiting some of the strongest binding affinities with the multimodal ligand. Interestingly, comparison of protein surface property data with ligand interaction sites indicated that the patch analysis on FC corroborated molecular-level binding information obtained from the nuclear magnetic resonance experiments. Finally, molecular dynamics simulation results were shown to be qualitatively consistent with the nuclear magnetic resonance results and to provide further insights into the binding mechanisms. An important contribution to multimodal ligand-FC binding in these preferred regions was shown to be electrostatic interactions and π-π stacking of surface-exposed histidines with the ligands. This combined biophysical and simulation approach has provided a deeper molecular-level understanding of multimodal ligand-FC interactions and sets the stage for future analyses of even more complex biotherapeutics.


Assuntos
Sítios de Ligação de Anticorpos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Humanos
5.
Int Immunol ; 29(7): 303-310, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472280

RESUMO

IgG is the major immunoglobulin class produced during an immune response against foreign antigens and efficiently provides protection through its bifunctional nature. While the Fab domains confer highly specific recognition of the antigen, the Fc domain mediates a wide range of effector functions that modulate several aspects of innate and adaptive immunity. Engagement of the various types of Fcγ receptors (FcγRs) by an IgG Fc domain can activate distinct immunomodulatory pathways with pleiotropic functional consequences for several leukocyte types. Fc effector functions are not limited to phagocytosis and cytotoxicity of IgG-opsonized targets but exhibit remarkable diversity and include modulation of leukocyte activity and survival, cytokine and chemokine expression, maturation of antigen-presenting cells, antigen processing and presentation, B-cell selection and IgG affinity maturation, as well as regulation of IgG production. These functions are initiated upon specific interactions of the Fc domain with the various types of FcγRs-a process that is largely determined by the structural heterogeneity of the IgG Fc domain. Modulation of the Fc-associated glycan structure and composition along with differences in the primary amino acid sequence among the IgG subclasses represent the two main diversification mechanisms of the Fc domain that generate a spectrum of Fc domain phenotypes with distinct affinity for the various FcγR types and differential capacity to activate immunomodulatory pathways.


Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Imunomodulação , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Animais , Apresentação de Antígeno , Biodiversidade , Humanos , Fagocitose , Receptores de IgG/genética
6.
Pharm Res ; 35(11): 220, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30255351

RESUMO

PURPOSE: Fc domains are an integral component of monoclonal antibodies (mAbs) and Fc-based fusion proteins. Engineering mutations in the Fc domain is a common approach to achieve desired effector function and clinical efficacy of therapeutic mAbs. It remains debatable, however, whether molecular engineering either by changing glycosylation patterns or by amino acid mutation in Fc domain could impact the higher order structure of Fc domain potentially leading to increased aggregation propensities in mAbs. METHODS: Here, we use NMR fingerprinting analysis of Fc domains, generated from selected Pfizer mAbs with similar glycosylation patterns, to address this question. Specifically, we use high resolution 2D [13C-1H] NMR spectra of Fc fragments, which fingerprints methyl sidechain bearing residues, to probe the correlation of higher order structure with the storage stability of mAbs. Thermal calorimetric studies were also performed to assess the stability of mAb fragments. RESULTS: Unlike NMR fingerprinting, thermal melting temperature as obtained from calorimetric studies for the intact mAbs and fragments (Fc and Fab), did not reveal any correlation with the aggregation propensities of mAbs. Despite >97% sequence homology, NMR data suggests that higher order structure of Fc domains could be dynamic and may result in unique conformation(s) in solution. CONCLUSION: The overall glycosylation pattern of these mAbs being similar, these conformation(s) could be linked to the inherent plasticity of the Fc domain, and may act as early transients to the overall aggregation of mAbs.


Assuntos
Anticorpos Monoclonais/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Agregados Proteicos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica
7.
Int J Mol Sci ; 19(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201867

RESUMO

Current treatment of rheumatoid arthritis (RA) is limited by relative shortage of treatment targets. HM-3 is a novel anti-RA polypeptide consisting of 18 amino acids with integrin αVß3 and α5ß1 as targets. Previous studies confirmed that HM-3 effectively inhibited the synovial angiogenesis and the inflammatory response. However, due to its short half-life, the anti-RA activity was achieved by frequent administration. To extend the half-life of HM-3, we designed a fusion protein with name HM-3-Fc, by combination of modified Fc segment of immunoglobulin 4 (IgG4) with HM-3 polypeptide. In vitro cell experiments demonstrated that HM-3-Fc inhibited the proliferation of splenic lymphocytes and reduced the release of TNF-α from macrophages. The pharmacodynamics studies on mice paw in Collagen-Induced Arthritis (CIA) model demonstrated that HM-3-Fc administered once in 5 days in the 50 and 25 mg/kg groups, or once in 7 days in the 25 mg/kg group showed a better protective effect within two weeks than the positive control adalimumab and HM-3 group. Preliminary pharmacokinetic studies in cynomolgus confirmed that the in vivo half-life of HM-3-Fc was 15.24 h in comparison with 1.32 min that of HM-3, which demonstrated that an Fc fusion can effectively increase the half-life of HM-3 and make it possible for further reduction of subcutaneous injection frequency. Fc-HM-3 is a long-acting active molecule for RA treatment.


Assuntos
Artrite Experimental/prevenção & controle , Integrinas/antagonistas & inibidores , Linfócitos/citologia , Proteínas Recombinantes de Fusão/administração & dosagem , Baço/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/administração & dosagem , Adalimumab/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Meia-Vida , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/farmacologia , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfaVbeta3/antagonistas & inibidores , Linfócitos/efeitos dos fármacos , Camundongos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Peixe-Zebra
8.
Chembiochem ; 17(20): 1951-1960, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27432157

RESUMO

The adenosine A2A receptor (A2A R) is expressed in immune cells, as well as brain and heart tissue, and has been intensively studied as a therapeutic target for multiple disease indications. Inhibitors of the A2A R have the potential for stimulating immune response, which could be valuable for cancer immune surveillance and mounting a response against pathogens. One well-established potent and selective small molecule A2A R antagonist, ZM-241385 (ZM), has a short pharmacokinetic half-life and the potential for systemic toxicity due to A2A R effects in the brain and the heart. In this study, we designed an analogue of ZM and tethered it to the Fc domain of the immunoglobulin IgG3 by using expressed protein ligation. The resulting protein-small molecule conjugate, Fc-ZM, retained high affinity for two Fc receptors: FcγRI and the neonatal Fc receptor, FcRn. In addition, Fc-ZM was a potent A2A R antagonist, as measured by a cell-based cAMP assay. Cell-based assays also revealed that Fc-ZM could stimulate interferon γ production in splenocytes in a fashion that was dependent on the presence of A2A R. We found that Fc-ZM, compared with the small molecule ZM, was a superior A2A R antagonist in mice, consistent with the possibility that Fc attachment can improve pharmacokinetic and/or pharmacodynamic properties of the small molecule.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Triazinas/farmacologia , Triazóis/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Animais , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Receptor A2A de Adenosina/deficiência , Infecções Respiratórias/tratamento farmacológico , Triazinas/síntese química , Triazinas/química , Triazóis/síntese química , Triazóis/química , Vaccinia virus/isolamento & purificação
9.
Mol Biol Rep ; 43(9): 911-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27251218

RESUMO

As an ancient disease, tuberculosis (TB) is a major global health threat. Therefore, there is an urgent need for an effective and safe anti-TB vaccine. In the current study, a delivery system of Fc domain of mouse IgG2a and early secreted antigenic target protein 6 (ESAT-6) was evaluated for the selective uptake of antigens by antigen-presenting cells (APCs). Thus, it was based on the immunogenicity of a fusion protein. The study was initiated by the transfer of recombinant expression vectors of pPICZαA-ESAT-6:Fcγ2a and pPICZαA-ESAT-6: His into Pichia pastoris (P. pastoris). Recombinant proteins were assessed for immunogenicity following the immunoblotting analysis. High levels of IFN-γ and IL-12 were produced to induce Th1-type cellular responses through vaccination with both recombinant proteins [ESAT-6:Fcγ2a (EF) and ESAT-6:His (EH)]. The Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low increment in IL-4 compared to PBS, BCG, and EH groups. Although in all the immunized groups, the ratio of IFN-γ/IL-4 was in favor of Th1 responses, the highest Th1/Th2 balance was observed in EF immunized group. Fc fragment of mouse IgG2a may induce a selective uptake of APCs towards the cross-presentation and formation of Th1 responses in favor of an appropriate protective anti-tuberculosis reaction. Thus, further research on Fc-fusion proteins is required to develop Fc-based TB vaccines.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/imunologia , Feminino , Imunidade Celular , Interferon gama/sangue , Interleucina-12/sangue , Interleucina-4/sangue , Camundongos Endogâmicos C57BL , Pichia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/biossíntese , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Vacinação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/biossíntese
10.
Mol Pharm ; 12(10): 3759-65, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26370910

RESUMO

The current recombinant human growth hormone (rhGH) therapy requires daily subcutaneous (sc) injections, which results in poor patient compliance, especially in young children. To reduce the dosing frequency, we generated a chimeric protein of rhGH and the Fc-domain of immunoglobulin G (IgG) (rhGH-Fc). The pharmacokinetics and pharmacodynamics of sc-injected rhGH-Fc were assessed in male Sprague-Dawley rats and hypophysectomized rats, respectively. A single sc injection of rhGH-Fc at a dose of 0.2 mg/kg slowly reached a Cmax of 16.80 ng/mL and remained for 7 days with a half-life of 51.1 h. Conversely, a single sc injection of rhGH 0.2 mg/kg rapidly reached a Cmax of 46.88 ng/mL and declined with a half-life of 0.55 h to baseline values in 4 h. In the efficacy study, the sc-injected rhGH-Fc induced rapid weight gain and tibial width growth at a dose of 240 µg/animal. The effect of two injections of rhGH-Fc separated by 1 week was comparable to that of the same dose of 14 daily injections of rhGH. The rhGH-Fc is a novel candidate for long-acting rhGH therapy with more convenient weekly administration, as it reduces glomerular filtration and receptor-mediated clearance while allowing for the rapid reversal of potential adverse events.


Assuntos
Hormônio do Crescimento Humano/análogos & derivados , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Animais , Meia-Vida , Hormônio do Crescimento Humano/farmacocinética , Hormônio do Crescimento Humano/farmacologia , Humanos , Hipofisectomia , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/farmacologia , Tíbia/crescimento & desenvolvimento , Aumento de Peso/efeitos dos fármacos
11.
Biotechnol Bioeng ; 110(10): 2785-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23592269

RESUMO

Cell-surface display of functional proteins is a powerful and useful tool for regulating and reinforcing cellular functions. Direct incorporation of site-specifically lipidated proteins from the extracellular medium is more rapid, easily controllable and reliable in displaying active proteins than expression through gene transfer. However, undesirable amphiphilic reagents such as organic co-solvents and detergents were required for suppressing aggregation of ordinary lipidated proteins in solution. We report here sortase A-catalyzed modification of proteins with a poly(ethylene glycol)(PEG)-lipid in situ on the surface of living cells. Proteins fused with a recognition tag were site-specifically ligated with the PEG-lipid which was preliminary incorporated into cell membranes. Accordingly, target proteins were successfully displayed on living cells without aggregation under an amphiphilic reagent-free condition. Furthermore, to demonstrate the availability of the present method, Fc domains of immunoglobulin G were displayed on cancer cells, and the phagocytosis of cancer cells with dendritic cells were enhanced through the Fc-Fc receptor interaction. Thus, the present facile chemoenzymatic method for protein display can be utilized for modulating cell-cell interactions in cell and tissue engineering fields.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Membrana , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Células HeLa , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Fosfatidiletanolaminas/metabolismo , Polietilenoglicóis/metabolismo
12.
Protein Sci ; 32(3): e4589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759959

RESUMO

The constant regions of clinical monoclonal antibodies are derived from a select number of allotypes found in IgG subclasses. Despite a long-term acknowledgment that this diversity may impact both antibody function and developability, there is a lack of data on the stability of variants carrying these mutations. Here, we generated a panel of IgG1, IgG2, and IgG3 antibodies with 32 unique constant region alleles and performed a systematic comparison of stability using red edge excitation shift (REES). This technique exploits the fluorescent properties of tryptophan residues to measure antibody structural dynamics which predict flexibility and the propensity to unfold. Our REES measurements revealed broad stability differences between subclasses with IgG3 possessing the poorest overall stability. Further interrogation of differences between variants within each subclass enabled the high-resolution profiling of individual allotype stabilities. Crucially, these observed differences were not found to be linked to N297-linked glycan heterogeneity. Our work demonstrates diverse stabilities (and dynamics) for a range of naturally occurring constant domain alleles and the utility of REES as a method for rapid and sensitive antibody stability profiling, requiring only laboratory spectrophotometry equipment.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Imunoglobulina G/química
13.
Biotechnol Rep (Amst) ; 38: e00791, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36915646

RESUMO

Antigen-specific polyclonal immunoglobulins derived from the serum, colostrum, or milk of immunized ruminant animals have potential as scalable therapeutics for the control of viral diseases including COVID-19. Here we show that the immunization of sheep with fusions of the SARS-CoV-2 receptor binding domain (RBD) to ovine IgG2a Fc domains promotes significantly higher levels of antigen-specific antibodies compared to native RBD or full-length spike antigens. This antibody population contained elevated levels of neutralizing antibodies that suppressed binding between the RBD and hACE2 receptors in vitro. A second immune-stimulating fusion candidate, Granulocyte-macrophage colony-stimulating factor (GM-CSF), induced high neutralizing responses in select animals but narrowly missed achieving significance. We further demonstrated that the antibodies induced by these fusion antigens were transferred into colostrum/milk and possessed cross-neutralizing activity against diverse SARS-CoV-2 variants. Our findings highlight a new pathway for recombinant antigen design in ruminant animals with applications in immune milk production and animal health.

14.
ACS Appl Mater Interfaces ; 14(14): 16074-16081, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353480

RESUMO

Regulation of nanomaterial-cell interaction is an important requisite for a variety of biomedical applications such as drug delivery systems and theranostics. Here, we demonstrate the regulation of nanomaterial-cell interaction using the oriented adsorption of intrinsic immunoglobulin G (IgG) on molecularly imprinted polymer nanogels (MIP-NGs) capable of recognizing the fragment crystallizable (Fc) domain of IgG. The unique domain recognition property resulted in the suppression of the immune response in Fc domain receptor-possessing macrophages and natural killer cells due to the regulation of protein corona based on the oriented adsorption of IgG. This resulted in the hindrance of the Fc domain, which is the trigger of an immune response. Furthermore, the acquisition of stealth capability was successfully demonstrated in vivo using intravital confocal laser scanning microscopy. The domain imprinting proposed in this study will provide a new strategy for creating nanomaterials capable of domain recognition-based oriented adsorption of intrinsic proteins in situ, thus regulating the protein corona formed on the nanomaterials. Thus, the unique Fc domain-recognition nanomaterial developed in our study can be used for various biomedical applications to target specific cells without triggering an immune response.


Assuntos
Impressão Molecular , Coroa de Proteína , Adsorção , Imunoglobulina G , Impressão Molecular/métodos , Nanogéis
15.
Methods Mol Biol ; 2421: 187-200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870820

RESUMO

Fc-mediated effector functions are important for the clearance of pathologic cells by therapeutic IgG antibodies through two mechanisms: via the activation of the classical complement pathway and through the binding to Fcγ receptors (FcγRs) which mediate clearance of targeted cells by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) by effector cells such as macrophages, NK cells, and other leukocytes subsets. Complement activation results in direct cell killing through the formation of the membrane attack complex (MAC, complement-dependent cytotoxicity or CDC) and in the deposition of complement opsonins on pathogen surfaces. The latter are recognized by complement receptors on effector cells in turn triggering complement-dependent cell cytotoxicity and phagocytosis (CDCC and CDCP, respectively). Little is known about the role of CDCC and CDCP on therapeutic antibody function because on the one hand, IgG isotype antibodies bind to both FcγR and C1q to activate the complement pathway, and on the other, immune cells express complement receptor as well as FcγRs. We engineered IgG1 Fc domains that bind with high affinity to C1q but have very little or no binding to FcγR. To this end, we employed display of IgG in E. coli (which lack protein glycosylation machinery) for the screening of very large libraries (>2 × 109) of randomly mutated human Fc domains to isolate Fc variants that bind to C1q. Herein we introduce and describe the method.


Assuntos
Imunoglobulina G/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Complemento C1q , Proteínas do Sistema Complemento , Escherichia coli , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Engenharia de Proteínas , Receptores Fc , Receptores de IgG/genética
16.
FEBS Open Bio ; 12(9): 1644-1656, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792784

RESUMO

Dinutuximab (ch14.18) was the first approved monoclonal antibody against the tumor-associated antigen disialoganglioside GD2. Despite its success in treating neuroblastoma (NB), it triggers a significant amount of neuropathic pain in patients, possibly through complement-dependent cytotoxicity (CDC). We hypothesized that modifying ch14.18 using antibody engineering techniques, such as humanization, affinity maturation, and Fc engineering, may enable the development of next-generation GD2-specific antibodies with reduced neuropathic pain and enhanced antitumor activity. In this study we developed the H3-16 IgG1m4 antibody from ch14.18 IgG1. H3-16 IgG1m4 exhibited enhanced binding activity to GD2 molecules and GD2-positive cell lines as revealed by ELISA, and its cross-binding activity to other gangliosides was not altered. The CDC activity of H3-16 IgG1m4 was decreased, and the antibody-dependent cellular cytotoxicity (ADCC) activity was enhanced. The pain response after H3-16 IgG1m4 antibody administration was also reduced, as demonstrated using the von Frey test in Sprague-Dawley (SD) rats. In summary, H3-16 IgG1m4 may have potential as a monoclonal antibody with reduced side effects.


Assuntos
Anticorpos Monoclonais , Neuralgia , Animais , Anticorpos Monoclonais/farmacologia , Gangliosídeos , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
17.
Cancers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053466

RESUMO

Tracking immune responses is complex due to the mixture of cell types, variability in cell populations, and the dynamic environment. Tissue biopsies and blood analysis can identify infiltrating and circulating immune cells; however, due to the dynamic nature of the immune response, these are prone to sampling errors. Non-invasive targeted molecular imaging provides a method to monitor immune response, which has advantages of providing whole-body images, being non-invasive, and allowing longitudinal monitoring. Three non-specific Fc-containing proteins were labeled with near-infrared dye IRDye800CW and used as imaging probes to assess tumor-infiltrating immune cells in FaDu and A-431 xenograft models. We showed that Fc domains localize to tumors and are visible by fluorescent imaging. This tumor localization appears to be based on binding tumor-associated immune cells and some xenografts showed higher fluorescent signals than others. The Fc domain alone bound to different human immune cell types. The Fc domain can be a valuable research tool to study innate immune response.

18.
Front Med Technol ; 4: 867982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419561

RESUMO

One of the major breakthroughs to combat the current Coronavirus Disease 2019 (COVID-19) pandemic has been the development of highly effective vaccines against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Still, alternatives are needed for individuals who are at high risk of developing severe COVID-19 and are not protected by vaccination. Monoclonal antibodies against the spike protein of SARS-CoV-2 have been shown to be effective as prophylaxis and treatment against COVID-19. However, the emergence of variants of concern (VOCs) challenges the efficacy of antibody therapies. This review describes the neutralization resistance of the clinically-approved monoclonal antibody therapies against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1), Delta (B.1.617.2), and the Omicron (B.1.1.529) variants. To guide the development of monoclonal antibody therapies and to anticipate on the continuous evolution of SARS-CoV-2, we highlight different strategies to broaden the antibody activity by targeting more conserved epitopes and/or simultaneously targeting multiple sites of vulnerability of the virus. This review further describes the contribution of antibody Fc effector functions to optimize the antibody efficacy. In addition, the main route of SARS-CoV-2 antibody administration is currently intravenously and dictates a monthly injection when used as prophylactic. Therefore, we discusses the concept of long-acting antibodies (LAABs) and non-intravenously routes of antibody administration in order to broaden the clinical applicability of antibody therapies.

19.
Vet Microbiol ; 273: 109526, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988378

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen. Although tremendous effort has been made for the vaccine development, only modified live vaccines are widely used with arguably limited efficacy. Our previous study showed that the Fc-fused first four Ig-like domains of Sn (Sn4D-Fc) and the SRCR domains 5-9 of CD163 (SRCR59-Fc) can act as PRRSV soluble receptors (VSRs). In this study, we improved the VSR-based anti-PRRSV strategy by taming their Fc domains. Sequence alignment showed that the CH3 domain of pig IgG1 contained five putative amino acids involved in the interaction with the neonatal Fc receptor (FcRn). The M455L/N461S variant of SRCR59-Fc/Sn4D-Fc was created for the higher affinity of FcRn binding. Both rBac-SRCR59-lsFc/Sn4D-lsFc and rBac-SRCR59-Fc/Sn4D-Fc expressing the mutated or wild-type VSRs were generated for conceptual validation. Both immunofluorescence and Western blotting analysis showed that the two rBac vectors could express the encoded VSRs in cells with similar expression levels and anti-PRRSV effects. In the rBac-injected mice, the expression of SRCR59-lsFc/Sn4D-lsFc was significantly prolonged than that of SRCR59-Fc/Sn4D-Fc. Both plasma stability and serum half-life of the purified SRCR59-lsFc/Sn4D-lsFc were significantly improved than that of SRCR59-Fc/Sn4D-Fc. SRCR59-lsFc/Sn4D-lsFc-treated peripheral blood mononuclear cells showed significantly stronger cytotoxicity on PRRSV-infected primary alveolar macrophages than SRCR59-Fc/Sn4D-Fc-treated cells. For the first time, we demonstrated that both half-life and effector function of pig IgG Fc-fused proteins could be significantly improved by taming their CH3 domains. The rBac-SRCR59-lsFc/Sn4D-lsFc could be further developed as a novel anti-PRRSV reagent.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Roedores , Doenças dos Suínos , Animais , Meia-Vida , Leucócitos Mononucleares , Macrófagos Alveolares , Camundongos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Domínios Proteicos , Suínos , Doenças dos Suínos/metabolismo
20.
Exp Suppl ; 112: 565-587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34687023

RESUMO

Exciting developments have been made in understanding antibody-mediated immunity, deepening understanding of antibody effector functions increasingly recognized as critical mechanisms of action beyond antigen recognition, and significantly broadening the evidence base for the importance of these effector mechanisms across diverse infectious and autoimmune diseases. Because these activities critically depend on the specific glycoforms present on a conserved site of the IgG Fc domain, relationships between the Fc glycosylation profiles of antigen-specific antibody pools and outcomes in infectious and autoimmune disease have begun to be defined, pointing to the key role of this posttranslational modification as a biomarker and mechanistic modifier of antibody-mediated immunity. Here we summarize studies evaluating the profiles and activities of antigen-specific antibodies elicited by infection and vaccination as well as within the context of allo- and autoimmunity, and consider current approaches to rational modification of Fc glycans in vivo.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Antígenos , Glicosilação , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa