RESUMO
Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.
RESUMO
The ability to construct metal single-atom catalysts (SACs) asymmetrically coordinated with organic heteroatoms represents an important endeavor toward developing high-performance catalysts over symmetrically coordinated counterparts. Moreover, it is of key importance in creating supporting matrix with porous architecture for situating SACs as it greatly impacts the mass diffusion and transport of electrolyte. Herein, we report the crafting of Fe single atoms with asymmetrically coordinated nitrogen (N) and phosphorus (P) atoms scaffolded by rationally designed mesoporous carbon nanospheres (MCNs) with spoke-like nanochannels for boosting ring-opening reaction of epoxide to produce an array of pharmacologically important ß-amino alcohols. Notably, interfacial defects in MCN derived from the use of sacrificial template create abundant unpaired electrons, thereby stably anchoring N and P atoms and in turn Fe atoms on MCN. Importantly, the introduction of P atom promotes the symmetry-breaking of common four N-coordinated Fe sites, resulting in the Fe-N3P sites on MCN (denoted Fe-N3P-MCN) with an asymmetric electronic configuration and thus superior catalytic capability. As such, the Fe-N3P-MCN catalysts manifest a high catalytic activity for ring-opening reaction of epoxide (97% yield) over the Fe-N3P docked on nonporous carbon surface (91%) as well as the sole Fe-N4 SACs grounded on the same MCN support (89%). Density functional theory calculations reveal that Fe-N3P SAC lowers the activation barrier for the C-O bond cleavage and the C-N bond formation, thus accelerating the ring-opening of epoxide. Our study provides fundamental and practical insights into developing advanced catalysts in a simple and controllable manner for multistep organic reactions.
RESUMO
Rational design of highly active and stable catalysts for dopamine oxidation is still a great challenge. Herein, inspired by the catalytic pocket of natural enzymes, an iodine (I)-doped single Fe-site catalyst (I/FeSANC) is synthesized to mimic the catalytic center of heme enzymes in both geometrical and electronic structures, aiming to enhance dopamine (DA) oxidation. Experimental studies and theoretical calculations show that electronic communication between I and FeN5 effectively modulates the electronic structure of the active site, greatly optimizing the overlap of Fe 3d and O 2p orbitals, thereby enhancing OH adsorption. In addition, the electronic communication induced by iodine doping attenuates the attack of proton hydrogen on the active center, thereby enhancing the stability of I/FeSANC. This work provides new insights into the design of highly active and stable single-atom catalysts and enhances the understanding of catalytic mechanisms for DA oxidation at the atomic scale.
RESUMO
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced â¢OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (ð, 75.29%), cooperative robust â¢OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Assuntos
Ferroptose , Neoplasias Pulmonares , Piroptose , Ferroptose/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Humanos , Camundongos , Piroptose/efeitos dos fármacos , Irídio/química , Irídio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ferro/químicaRESUMO
Although traditional Fe-based nanozymes have shown great potential, generally only a small proportion of the Fe atoms on the catalyst's surface are used. Herein, we synthesized single-atom Fe on N-doped graphene nanosheets (Fe-CNG) with high atom utilization efficiency and a unique coordination structure. Active oxygen species including superoxide radicals (O2â¢-) and singlet oxygen (1O2) were efficiently generated from the interaction of the Fe-CNG with dissolved oxygen in acidic conditions. The Fe-CNG nanozymes were found to display enhanced oxidase-like and laccase-like activity, with Vmax of 2.07 × 10-7 MâS-1 and 4.54 × 10-8 MâS-1 and Km of 0.324 mM and 0.082 mM, respectively, which is mainly due to Fe active centers coordinating with O and N atoms simultaneously. The oxidase-like performance of the Fe-CNG can be effectively inhibited by ascorbic acid (AA) or hydroquinone (HQ), which can directly obstruct the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, a direct and sensitive colorimetric method for the detection of AA and HQ activity was established, which exhibited good linear detection and limit of detection (LOD) of 0.048 µM and 0.025 µM, respectively. Moreover, a colorimetric method based on the Fe-CNG catalyst was fabricated for detecting the concentration of AA in vitamin C. Therefore, this work offers a new method for preparing a single-atom catalyst (SAC) nanozyme and a promising strategy for detecting AA and HQ.
Assuntos
Ácido Ascórbico , Colorimetria , Grafite , Hidroquinonas , Ferro , Lacase , Limite de Detecção , Ácido Ascórbico/análise , Ácido Ascórbico/química , Colorimetria/métodos , Hidroquinonas/química , Hidroquinonas/análise , Ferro/química , Grafite/química , Lacase/química , Lacase/metabolismo , Nanoestruturas/química , Oxirredutases/química , Oxirredução , CatáliseRESUMO
Low Na+ and electron diffusion kinetics severely restrain the rate capability of MoS2 as anode for sodium-ion batteries (SIBs). Slow phase transitions between 2H and 1T, and from NaxMoS2 to Mo and Na2S as well as the volume change during cycling, induce a poor cycling stability. Herein, an original Fe single atom doped MoS2 hollow multishelled structure (HoMS) is designed for the first time to address the above challenges. The Fe single atom in MoS2 promotes the electron transfer, companying with shortened charge diffusion path from unique HoMS, thereby achieving excellent rate capability. The strong adsorption with Na+ and self-catalysis of Fe single atom facilitates the reversible conversion between 2H and 1T, and from NaxMoS2 to Mo and Na2S. Moreover, the buffering effect of HoMS on volume change during cycling improves the cyclic stability. Consequently, the Fe single atom doped MoS2 quadruple-shelled sphere exhibits a high specific capacity of 213.3â mAh g-1 at an ultrahigh current density of 30â A g-1, which is superior to previously-reported results. Even at 5â A g-1, 259.4â mAh g-1 (83.68 %) was reserved after 500 cycles. Such elaborate catalytic site decorated HoMS is also promising to realize other "fast-charging" high-energy-density rechargeable batteries.
RESUMO
Room temperature sodium-sulfur (RT Na-S) batteries are highly competitive as potential energy storage devices. Nevertheless, their actually achieved reversible capacities are far below the theoretical value due to incomplete transformation of polysulfides. Herein, atomically dispersed Fe-N/S active center by regulating the second-shell coordinating environment of Fe single atom is proposed. The Fe-N4 S2 coordination structure with enhanced local electronic concentration around the Fermi level is revealed via synchrotron radiation X-ray absorption spectroscopy (XAS) and theoretical calculations, which can not only significantly promote the transformation kinetics of polysulfides, but induce uniform Na deposition for dendrite-free Na anode. As a result, the obtained S cathode delivers a high initial reversible capacity of 1590â mAh g-1 , nearly the theoretical value. This work opens up a new avenue to facilitate the complete transformation of polysulfides for RT Na-S batteries.
Assuntos
Ferro , Ferro/química , Elétrons , Modelos Moleculares , Conformação Molecular , Difração de Raios XRESUMO
Electrosynthesis of H2 O2 has great potential for directly converting O2 into disinfectant, yet it is still a big challenge to develop effective electrocatalysts for medical-level H2 O2 production. Herein, we report the design and fabrication of electrocatalysts with biomimetic active centers, consisting of single atomic iron asymmetrically coordinated with both nitrogen and sulfur, dispersed on hierarchically porous carbon (FeSA -NS/C). The newly-developed FeSA -NS/C catalyst exhibited a high catalytic activity and selectivity for oxygen reduction to produce H2 O2 at a high current of 100â mA cm-2 with a record high H2 O2 selectivity of 90 %. An accumulated H2 O2 concentration of 5.8â wt.% is obtained for the electrocatalysis process, which is sufficient for medical disinfection. Combined theoretical calculations and experimental characterizations verified the rationally-designed catalytic active center with the atomic Fe site stabilized by three-coordinated nitrogen atoms and one-sulfur atom (Fe-N3 S-C). It was further found that the replacement of one N atom with S atom in the classical Fe-N4 -C active center could induce an asymmetric charge distribution over N atoms surrounding the Fe reactive center to accelerate proton spillover for a rapid formation of the OOH* intermediate, thus speeding up the whole reaction kinetics of oxygen reduction for H2 O2 electrosynthesis.
RESUMO
Remote control of cells and the regulation of cell events at the molecular level are of great interest to the biomedical field. In addition to mechanical forces and genes, chemical compounds and light play pivotal roles in regulating cell fate, which have boosted the fast growth of biology. Herein, we synthesized light-regulated, atomically dispersed Fe-N4immobilized on a carbon substrate nanozyme (Fe-N/C single atom catalysts), whose peroxidase- and catalase-like properties can be enhanced by 120% and 135%, respectively, under 808-nm laser irradiation through the photothermal effect of Fe-N/C. Interestingly, a switch to love/switch to kill interaction between Fe-N/C dose and near-infrared (NIR) light co-regulating the Fe-N/C nanozyme to modulate cell fate was discovered. Based on this, we found that under NIR light irradiation, when the dose of Fe-N/C is low, it can scavenge more reactive oxygen species (ROS) and achieve cell protection; when the dose of Fe-N/C is too high, it tended to lead to cell apoptosis. This work not only provides an effective strategy for the regulation of nanozyme activity but also realizes the dual-functional application of nanozyme materials for the treatment of some specific diseases.
Assuntos
Ferro , Carbono/química , Catalase , Ferro/química , Ferro/farmacologia , Espécies Reativas de OxigênioRESUMO
Developing advanced heterogeneous catalysts with atomically dispersed active sites is an efficient strategy to boost the kinetics of peroxymonosulfate (PMS) activation for micropollutant removal. Here, we report a binary Mo2TiC2Tx MXene-based electroactive filter system with abundant surface Mo vacancies for effective activation of PMS. The Mo vacancies assumed two essential roles: (i) as anchoring sites for Fe single atoms (Fe-SA) and (ii) as cocatalytic sites for the Fenton-like reaction. Fe-SA formed strong metal-oxygen bonds with the Mo2TiC2Tx support, stabilizing at the sites previously occupied by Mo. The resulting Fe-SA/Mo2TiC2Tx nanohybrid filter achieved 100% degradation of sulfamethoxazole (SMX) in the single-pass mode (hydraulic retention time <2 s) when assisted by an electric field (2.0 V). The rate constant (k = 2.89 min-1) for SMX removal was 24 and 67 times greater than that of Fe nanoparticles immobilized on Mo2TiC2Tx and the pristine Mo2TiC2Tx filter, respectively. Operation in the flow-through configuration outperformed the conventional batch reactor model (k = 0.17 min-1) due to convection-enhanced mass transport. The results obtained from experimental investigations and theoretical calculations suggested that atomically dispersed Fe-SA, anchored on Mo vacancies, was responsible for the adsorption and activation of PMS to produce sulfate radicals (SO4â¢-) in the presence of an electric field. This study provides a proof-of-concept demonstration of an electroactive Fe-SA/Mo2TiC2Tx filter for broader application in the treatment of water contaminated by emerging micropollutants.
Assuntos
Ferro , Peróxidos , Catálise , Ferro/química , Peróxidos/química , SulfametoxazolRESUMO
Singlet oxygen (1 O2 ) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of 1 O2 . In this work, we develop a graphitic carbon nitride supported Fe single-atoms catalyst (Fe1 /CN) containing highly uniform Fe-N4 active sites with a high Fe loading of 11.2â wt %. The Fe1 /CN achieves generation of 100 % 1 O2 by activating peroxymonosulfate (PMS), which shows an ultrahigh p-chlorophenol degradation efficiency. Density functional theory calculations results demonstrate that in contrast to Co and Ni single-atom sites, the Fe-N4 sites in Fe1 /CN adsorb the terminal O of PMS, which can facilitate the oxidization of PMS to form SO5 .- , and thereafter efficiently generate 1 O2 with 100 % selectivity. In addition, the Fe1 /CN exhibits strong resistance to inorganic ions, natural organic matter, and pH value during the degradation of organic pollutants in the presence of PMS. This work develops a novel catalyst for the 100 % selective production of 1 O2 for highly selective and efficient degradation of pollutants.
RESUMO
The present study of a novel metal-organic framework containing Fe single atoms doped on electrospun carbon nanofibers (Fe SA-MOF@CNF) based on dispersive micro solid phase extraction (D-µ-SPE) using HPLC-PDA for detection tartrazine in fake saffron samples was designed. The Fe SA-MOF@CNF sorbent was extensively characterized through various techniques including N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The specific area of surface of the sorbent was 577.384 m2/g. The study variables were optimized via the central composite design (CCD), which included a sorbent mass of 15 mg, a contact time of 6 min, a pH of 7.56, and a tartrazine concentration of 300 ng/ml. Under the optimum condition, the calibration curve of this method was linear in the range of 5-1000 ng/mL, with a correlation coefficient of 0.992. The LOD and LOQ values were ranged 0.38-0.74 and 1.34-2.42 ng/ml, respectively. This approach revealed significant improvements, including high extraction recovery (98.64), recovery rates (98.43-102.72%), and accuracy (RSDs < 0.75 to 3.6%). the enrichment factors were obtained in the range of 80.6-86.4 with preconcentration factor of 22.3. Consequently, the D-µ-SPE method based on synthesized Fe SA-MOF@CNF could be recommended as a sustainable sorbent for detecting tartrazine in saffron samples.
Assuntos
Crocus , Estruturas Metalorgânicas , Tartrazina , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , CorantesRESUMO
Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.
Assuntos
Colorimetria , Aprendizado de Máquina , Infecções Urinárias , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia , Infecções Urinárias/urina , Colorimetria/métodos , Humanos , Ferro/química , Técnicas Biossensoriais/métodosRESUMO
Promotion of oxygen reduction reaction (ORR) kinetics, to a large extent, depends on the rational modulation of the electronic structure and mass diffusion of electrocatalysts. Herein, a ferrocene (Fc)-assisted strategy is developed to prepare Fc-trapped ZnMo-hybrid zeolitic imidazolate framework (Fc@ZnMo-HZIF-50) and the derived Fe single atom coupling with MoC nanoparticles, coembedded in hierarchically porous N-doped carbon cubes (MoC@FeNC-50). The introduced Fc is utilized not only as an iron source for single atoms but also as a morphology regulator for generating a hierarchically porous structure. The redistribution of electrons between Fe single atoms and MoC nanoparticles effectively promotes the adsorption of O2 and the formation of *OOH intermediates during the ORR process. Along with a 3D hierarchically porous architecture for enhanced mass transport, the as-fabricated MoC@FeNC-50 presents excellent activity (E1/2 = 0.83 V) and durability (only 9.5% decay in current after 40000 s). This work could inspire valuable insights into the construction of efficient electrocatalysts through electron configuration and kinetics engineering.
RESUMO
The electro-Fenton with in situ generated 1O2 and â¢OH is a promising method for the degradation of micropollutants. However, its application is hindered by the lack of catalysts that can efficiently generate 1O2 and â¢OH from electrochemical oxygen reduction. Herein, N-doped stacked carbon nanosheets supported Fe single atoms (Fe-NSC) with FeN4 sites were designed for simultaneous generation of 1O2 and â¢OH to enhance electro-Fenton degradation. Due to the synergistic effect of 1O2 and â¢OH, a variety of contaminants (phenol, 2,4-dichlorophenol, sulfamethoxazole, atrazine and bisphenol A) were efficiently degraded with high kinetic constants of 0.037-0.071 min-1 by the electro-Fenton with Fe-NSC as cathode (-0.6 V vs Ag/AgCl, pH 6). Moreover, the superior performance for electro-Fenton degradation was well maintained in a wide pH range from 3 to 10 even with interference of various inorganic salt ions. It was found that FeN4 sites with pyridinic N coordination were responsible for its good performance for electro-Fenton degradation. Its 1O2 yield was higher than â¢OH yield, and the contribution of 1O2 was more significant than â¢OH for pollutant degradation.
RESUMO
Resting sweat analysis could provide unique insight into the metabolic levels of physiological and pathological states. However, the low secretion rate of resting sweat and the low concentration of metabolic molecules pose challenges for the development of noninvasive wearable sensors. Here, we demonstrated a wearable patch for the precise analysis of uric acid at rest. Fe single-atom nanozymes (FeSAs) with excellent electrocatalytic activity were used to develop a sensor for selective catalysis of uric acid (UA, 1-425 µM), and the catalytic mechanism of UA was later explored by density functional theory. In addition, polyaniline was integrated into the wearable patch for pH detection; thus, accurate analysis of sweat UA molecules can be achieved by pH calibration. Then, we explored the possibility of collecting resting sweat with different ratios of agarose hydrogels to reduce the sweat accumulation time. Finally, the possibility of a wearable patch for accurate UA detection in volunteer sweat samples was experimentally verified. We believe that our work provides novel insights and ideas for the analysis of resting sweat using wearable devices, further driving advancements in the field of personalized medicine.
Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Ácido Úrico , Calibragem , CatáliseRESUMO
Mutual interference issues between heavy metal ions tremendously affect the detection reliability and accuracy in water quality analysis, especially the serious interference of Cu(II) on the detection of As(III) is greatly hard to overcome, which needs to be solved urgently. Herein, iron single-atom catalysts with different coordination structures of FeN2C2 and FeN3P are constructed to selectively catalyze the detection of As(III) in the coexistence of Cu(II). FeN3P achieves a high sensitivity of 3.90 µA ppb-1 toward As(III) in NH4Cl/NH3·H2O electrolyte (pH 8.0), completely avoiding Cu(II)-interference. Moreover, the turnover frequency (TOF) of FeN3P is an order of magnitude higher than that of FeN2C2. X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations demonstrate that an As-O bond of H3AsO3 is broken by the strong affinities between both P and O atoms and Fe and As atoms, and H3AsO3 are preferentially reduced by FeN3P during adsorptive process. Meanwhile, the low reaction energy barrier of the rate-determined step for As(III) reduction over FeN3P also accelerates the deposition of As(III) and enhances its response signals. The free-Cu(II) are difficult to adsorb on FeN3P and do not compete with As(III) for Fe active sites, which contributes to the excellent anti-Cu(II) interference capability.
RESUMO
The control of morphology, structure and composition of metal-organic frameworks derived metal-nitrogen doped porous carbon (M-N-C) with high precision and accuracy is essential for the catalytic performance. While single-atom or small-sized nanometer catalysts show notable effects in catalysis, one catalyst combining the advantages of single-atom and nanometer catalysts may cultivate more benefits. Herein, we designed and successfully fabricated a series of Fe-doped ZIF-x with different morphologies (cubeâtruncated hexahedronâtruncated octahedron) in one pot by simply adjusting the adding amount of vitamin C. After high-temperature calcination, Fe3C integrated with Fe single-atom planted in N-doped carbon (FeSA/FeNC-N-C-x) with various morphology, structure and composition could be acquired. Among them, FeSA/FeNC-N-C-0.75 exhibited the best catalytic performance for the transfer hydrogenation of halogenated nitrobenzenes with N2H4·H2O under room temperature. Acid-leaching tests, poisoning experiments, and the density functional theory calculations showed that Fe3C integrated with Fe single-atom had a better catalytic effect than the separated Fe3C or Fe single-atom.
RESUMO
Rechargeable aqueous zinc iodine (ZnÇÇI2) batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode, iodine cathode and aqueous electrolytes. Whereas, on one hand, the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides, deficient iodine utilization and sluggish reaction kinetics. On the other hand, the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density. Here, we propose a "confinement-catalysis" host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host, which can effectively confine and catalytically convert I2/I- couple and polyiodide intermediates. Consequently, the cathode enables the high capacity of 188.2 mAh g-1 at 0.3 A g-1, excellent rate capability with a capacity of 139.6 mAh g-1 delivered at high current density of 15 A g-1 and ultra-long cyclic stability over 50,000 cycles with 80.5% initial capacity retained under high iodine loading of 76.72 wt%. Furthermore, the electrocatalytic host can also accelerate the [Formula: see text] conversion. The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I-/I2 and I2/I+ couples, and polyiodide intermediates conversions.
RESUMO
The rational design and in-depth understanding of the structure-activity relationship (SAR) of hydrogen and oxygen evolution reaction (HER and OER) bifunctional electrocatalysts are vital to decreasing the energy consumption of hydrogen production by electrochemical water splitting. Herein, we report an inducing electron delocalization method where Fe single atoms as inducers are used to regulate the electron structure of Au nanoclusters by the M-Nx-C substrate to acquire satisfactory intrinsic HER activity. Meanwhile, Fe single atoms also serve as efficient OER active sites to construct bifunctional electrocatalysts. On account of the strong synergistic effect between Au nanoclusters and Fe single atoms, the hybrid catalyst Au-Fe1NC/NF performs an outstanding alkaline HER and OER activity. Only 35.6 mV, 246 mV, and 1.52 V are needed to reach 10 mA cm-2 for alkaline HER, OER, and two-electrode electrolytic cells, respectively. In addition, the bifunctional electrocatalysts also display excellent electrochemical stability. DFT calculations demonstrate that the strong synergistic effect can enhance the O-H bond activation ability of Au nanoclusters and upshift the d-band center of the Fe single atom to promote alkaline electrocatalytic water splitting. The strong synergistic effect is proven to arise from the electron delocalization of Au nanoclusters triggered by Fe single atoms.