Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Chemistry ; 30(44): e202400765, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38742808

RESUMO

A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.

2.
Mol Pharm ; 21(8): 4060-4073, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013609

RESUMO

Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the •CO2- radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol. Pharmaceutics 2022, 19 (11), 4026-4042]. Here, we evaluated the impact of citrate-Fe(III) on the photostability and degradation mechanisms of disulfide-containing proteins (bovine serum albumin (BSA) and NISTmAb) under pharmaceutically relevant conditions. We monitored and localized competitive disulfide reduction and protein oxidation by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis depending on the reaction conditions. These competitive pathways were affected by multiple factors, including light dose, Fe(III) concentration, protein concentration, the presence of oxygen, and light intensity.


Assuntos
Anticorpos Monoclonais , Compostos Férricos , Luz , Oxirredução , Soroalbumina Bovina , Espectrometria de Massas em Tandem , Raios Ultravioleta , Soroalbumina Bovina/química , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/química , Compostos Férricos/química , Cromatografia Líquida de Alta Pressão , Soluções Tampão , Fotólise , Bovinos , Ácido Cítrico/química , Dissulfetos/química , Ferro/química
3.
Environ Sci Technol ; 58(28): 12674-12684, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38965983

RESUMO

Although natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δ34SSO4 and δ18OSO4 values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation. Microbial humic-like and protein-like components mediated the reduction of Fe(III) and sulfate, respectively. Organic molecules with H/C > 1.5 were conducive to microbe-mediated reduction of Fe(III) and sulfate and facilitated the natural attenuation of dissolved U. The average U attenuation rate was -1.07 mg/L/yr, with which the U-contaminated groundwater would be naturally attenuated in approximately 11.2 years. The study highlights the specific organic molecules regulating the natural attenuation of groundwater U via the reduction of Fe(III) and sulfate.


Assuntos
Água Subterrânea , Mineração , Urânio , Poluentes Radioativos da Água , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Compostos Orgânicos , Isótopos , Biodegradação Ambiental , Sulfatos
4.
Environ Sci Technol ; 58(24): 10817-10827, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832598

RESUMO

Direct photoreduction of FeIII is a widely recognized route for accelerating FeIII/FeII cycle in photo-Fenton chemistry. However, most of the wavelengths covering the full spectral range are insufficient to supply enough photon energy for the direct reduction process. Herein, the hitherto neglected mechanism of FeIII reduction that the FeIII indirect reduction pathway initiated by light energy-dependent reactivity variation and reactive excited state (ES) was explored. Evolution of excited-state FeIII species (*FeIII) resulting from metal-centered charge excitation (MCCE) of FeIII is experimentally verified using pulsed laser femtosecond transient absorption spectroscopy with UV-vis detection and theoretically verified by quantum chemical calculation. Intense photoinduced intravalence charge transition was observed at λ = 380 and 466 nm, revealing quartet 4MCCE and doublet 2MCCE and their exponential processes. Light energy-dependent variation of *FeIII reactivity was kinetically certified by fitting the apparent rate constant of the radical-chain sequence of photo-Fenton reactions. Covalency is found to compensate for the intravalence charge separation following photoexcitation of the metal center in the MCCE state of Fenton photosensitizer. The *FeIII is established as a model, demonstrating the intravalence hole delocalization in the ES can be leveraged for photo-Fenton reaction or other photocatalytic schemes based on electron transfer chemistry.


Assuntos
Ferro , Ferro/química , Oxirredução , Peróxido de Hidrogênio/química , Cinética
5.
Environ Sci Technol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271452

RESUMO

Acid mine drainage (AMD) raises a global environmental concern impacting the iron cycle. Although the formation of Fe(III) minerals in AMD-impacted waters has previously been reported to be regulated by biological processes, the role of abiotic processes remains largely unknown. This study first reported that a photochemical reaction coupled with O2 significantly accelerated the formation of Fe(III) flocculates (i.e., schwertmannite) in the AMD, as evidenced by the comparison of samples from contaminated sites across different natural conditions at latitudes 24-29° N. Combined with experimental and modeling results, it is further discovered that the intramolecular oxidation of photogenerated Fe(II) with a five-coordinative pyramidal configuration (i.e., [(H2O)5Fe]2+) by O2 was the key in enhancing the photooxidation of Fe(II) in the simulated AMD. The in situ attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), UV-vis spectroscopy, solvent substitution, and quantum yield analyses indicated that, acting as a precursor for flocculation, [(H2O)5Fe]2+ likely originated from both the dissolved and colloidal forms of Fe(III) through homogeneous and surface ligand-to-metal charge transfers. Density functional theory calculations and X-ray absorption spectroscopy results further suggested that the specific oxidation pathways of Fe(II) produced the highly reactive iron species and triggered the hydrolysis and formation of transient dihydroxo dimers. The proposed new pathways of Fe cycle are crucial in controlling the mobility of heavy metal anions in acidic waters and enhance the understanding of complicated iron biochemistry that is related to the fate of contaminants and nutrients.

6.
J Fluoresc ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300485

RESUMO

Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.

7.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659001

RESUMO

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismo
8.
Drug Dev Res ; 85(7): e22264, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39329226

RESUMO

To inhibit the growth and metastasis of triple-negative breast cancer (TNBC), two Fe(III) thiosemicarbazone complexes (Fe1 and Fe2) were designed and synthesized. The structures of the Fe(III) complexes were characterized by single crystal X-ray diffraction. The antiproliferative activity of Fe1 and Fe2 against four cancer lines (MDA-MB-231, T98G, HepG2, 143B) and human renal proximal tubular epithelial cell line (HK-2) was evaluated by MTT assay. Among all cells, Fe2 showed significant cytotoxicity to TNBC cells (MDA-MB-231), with an IC50 value of 12.38 µM. Furthermore, Fe2 showed less toxicity to HK-2 cells. The two Fe(III) complexes can produce excess of reactive oxygen species, decrease of mitochondrial membrane potential, and induce DNA damage, then lead to apoptosis of MDA-MB-231 cells. In addition, Fe1 and Fe2 can also inhibit migration and invasion of MDA-MB-231 cells. This study provides guidance for the development of metal complexes that inhibit the growth and metastasis of TNBC.


Assuntos
Antineoplásicos , Apoptose , Compostos Férricos , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Férricos/química , Compostos Férricos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Dano ao DNA/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios de Seleção de Medicamentos Antitumorais
9.
J Environ Manage ; 357: 120823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583380

RESUMO

Fe(II) regeneration plays a crucial role in the electro-Fenton process, significantly influencing the rate of ·OH formation. In this study, a method is proposed to improve Fe(II) regeneration through N-doping aimed at enhancing the adsorption capacity of the activated carbon cathode for Fe(III). N-doping not only enriched the pore structure on the surface of activated carbon, providing numerous adsorption sites, but also significantly increased the adsorption energy for Fe(III). Among the types of nitrogen introduced, pyridine-N exhibited the most substantial enhancement effect, followed by pyrrole-N, while graphite-N showed a certain degree of inhibition. Furthermore, N-doping facilitated the adsorption of all forms of Fe(III) by activated carbon. The adsorption and electrosorption rates of the NAC-900 electrode for Fe(III) were 30.33% and 42.36%, respectively. Such modification markedly enhanced the Fe3+/Fe2+ cycle within the electro-Fenton system. The NAC-900 system demonstrated an impressive phenol degradation efficiency of 93.67%, alongside the lowest electricity consumption attributed to the effective "adsorption-reduction" synergy for Fe(III) on the NAC-900 electrode. Compared to the AC cathode electro-Fenton system, the degradation efficiency of the NAC-900 cathode electro-Fenton system at pH = levels ranging from 3 to 5 exceeded 90%; thus, extending the pH applicability of the electro-Fenton process. The degradation efficiency of phenol using the NAC-900 cathode electro-Fenton system in various water matrices approached 90%, indicating robust performance in real wastewater treatment scenarios. This research elucidates the impact of cathodic Fe(III) adsorption on Fe(II) regeneration within the electro-Fenton system, and clarifies the influence of different N- doping types on the cathodic adsorption of Fe(III).


Assuntos
Compostos Férricos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Carvão Vegetal/química , Conservação de Recursos Energéticos , Oxirredução , Eletrodos , Fenol , Compostos Ferrosos , Peróxido de Hidrogênio/química
10.
J Environ Manage ; 352: 120124, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38244412

RESUMO

Iron is recognized as a physiological requirement for anammox bacteria (AnAOB), with Fe(II) considered to be the most effective form. However, Fe(III), instead of Fe(II) is the common iron form in natural and artificial ecosystems. In this study, the nitrogen removal performance and metabolic mechanisms in anammox consortia with soluble and non-soluble Fe(III) as the sole iron element were investigated. After the 150-day operation, the soluble (FeCl3) and insoluble (Fe2O3) Fe(III)-fed anammox systems reached nitrogen removal rates of 71.84 ± 0.80% and 50.20 ± 0.98%, respectively. AnAOB could survive with soluble (FeCl3) or insoluble (Fe2O3) Fe(III) as the sole iron element, reaching relative abundances of 18.49% and 13.16%, respectively. The results show that the formation of anammox core consortia can enable AnAOB's survival to adverse external conditions of Fe(II) deficiency. Metagenomic and metatranscriptomic analysis reveal that Ca. Kuenenia can only uptake Fe(II) into the cell for metabolisms either independently through the extracellular electron transfer or with the cross-feeding of symbiotic microbes. This study provides insight into the utilization and metabolic mechanisms of Fe(III) in Ca. Kuenenia-dominated consortia, and deepens the understanding of anammox core consortia in the nitrogen, carbon, and iron cycling, further promoting the practical applications of anammox processes.


Assuntos
Cloretos , Compostos Férricos , Ferro , Oxirredução , Oxidação Anaeróbia da Amônia , Ecossistema , Multiômica , Bactérias/genética , Bactérias/metabolismo , Compostos Ferrosos , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Anaerobiose , Esgotos
11.
Water Sci Technol ; 89(7): 1682-1700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619897

RESUMO

In this research, ascorbic acid (AA) was used to enhance Fe(II)/Fe(III)-activated permonosulfate (PMS) systems for the degradation of fluoranthene (FLT). AA enhanced the production of ROS in both PMS/Fe(II) and PMS/Fe(III) systems through chelation and reduction and thus improved the degradation performance of FLT. The optimal molar ratio in PMS/Fe(II)/AA/FLT and PMS/Fe(III)/AA/FLT processes were 2/2/4/1 and 5/10/5/1, respectively. In addition, the experimental results on the effect of FLT degradation under different groundwater matrixes indicated that PMS/Fe(III)/AA system was more adaptable to different water quality conditions than the PMS/Fe(II)/AA system. SO4·- was the major reactive oxygen species (ROS) responsible for FLT removal through the probe and scavenging tests in both systems. Furthermore, the degradation intermediates of FLT were analyzed using gas chromatograph-mass spectrometry (GC-MS), and the probable degradation pathways of FLT degradation were proposed. In addition, the removal of FLT was also tested in actual groundwater and the results showed that by increasing the dose and pre-adjusting the solution pH, 88.8 and 100% of the FLT was removed for PMS/Fe(II)/AA and PMS/Fe(III)/AA systems. The above experimental results demonstrated that PMS/Fe(II)/AA and PMS/Fe(III)/AA processes have a great perspective in practice for the rehabilitation of FLT-polluted groundwater.


Assuntos
Compostos Férricos , Fluorenos , Poluentes Químicos da Água , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/química , Peróxidos/química , Compostos Ferrosos
12.
Bull Environ Contam Toxicol ; 112(2): 30, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281179

RESUMO

This study focused on constructing iron(III)-tetraamidomacrocyclic ligand (FeIII-TAML)-based magnetic nanostructures via a surfactant-assisted self-assembly (SAS) method to enhance the reactivity and recoverability of FeIII-TAML activators, which have been widely employed to degrade various organic contaminants. We have fabricated FeIII-TAML-based magnetic nanomaterials (FeIII-TAML/CTAB@Fe3O4, CTAB refers to cetyltrimethylammonium bromide) by adding a mixed solution of FeIII-TAML and NH3·H2O into another mixture containing CTAB, FeCl2 and FeCl3 solutions. The as-prepared FeIII-TAML/CTAB@Fe3O4 nanocomposite showed relative reactivity compared with free FeIII-TAML as indicated by decomposition of bisphenol A (BPA). Moreover, our results demonstrated that the FeIII-TAML/CTAB@Fe3O4 composite can be separated directly from reaction solutions by magnet adsorption and reused for at least four times. Therefore, the efficiency and recyclability of self-assembled FeIII-TAML/CTAB@Fe3O4 nanostructures will enable the application of FeIII-TAML-based materials with a lowered expense for environmental implication.


Assuntos
Compostos Benzidrílicos , Compostos Férricos , Nanoestruturas , Fenóis , Compostos Férricos/química , Cetrimônio , Fenômenos Magnéticos
13.
J Environ Sci (China) ; 139: 23-33, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105051

RESUMO

Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.


Assuntos
Compostos Férricos , Lignina , Oxirredução , Compostos Férricos/química , Minerais/química , Solo , Compostos Ferrosos
14.
Angew Chem Int Ed Engl ; 63(37): e202405666, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38884268

RESUMO

The solvothermal reaction of FeCl2 ⋅ 4H2O and H4TBC[4] in a basic dmf/EtOH solution affords an [FeIII 18] Keplerate conforming to a stellated cuboctahedron. Magnetic and heat capacity measurements reveal spin frustration effects arising from the high symmetry. A crossover between inverse and direct magnetocaloric effects is observed at ~10 K for applied-field changes lower than 3 T.

15.
Angew Chem Int Ed Engl ; : e202412122, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136336

RESUMO

The oxidative cleavage of alkenes is a crucial step in synthesizing key organic molecules featuring carbonyl functional groups prevalent in natural products and pharmaceuticals. We introduce a photochemical method for heterogeneous C=C bond cleavage, employing photo-catalytically generated [(bTAML)FeIV-O-FeIV(bTAML)]- species (where bTAML stands for biuret-modified tetraamido macrocyclic ligand) in aqueous environments under gentle conditions. Leveraging the photosensitizing properties of Covalent Organic Frameworks (COFs) and their advantageous morphological traits as films, we enhance the reaction by closely associating the substrate with the catalyst. This study marks the inaugural demonstration of Fe2 IV-µ-oxo radical cation and FeIV=O species facilitating alkene cleavage in water against a backdrop of a hydrophobic COF. Through comprehensive mechanistic studies, including control experiments, we confirm that these two high-valent iron oxo species collaborate to cleave alkenes, forming an intermediate epoxide. Our approach yields moderate to high success across various alkenes, displaying diverse functional groups (achieving up to 75 % yield) with notable efficiency and selectivity towards aldehyde/ketone products. Moreover, the heterogeneous COF film, immobilizing (Et4N)2[FeIII(Cl)bTAML], exhibits exceptional recyclability, enduring up to four cycles.

16.
Appl Environ Microbiol ; 89(3): e0217522, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36853045

RESUMO

The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.


Assuntos
Arsênio , Geobacter , Compostos Férricos/metabolismo , Antimônio , Arsênio/metabolismo , Minerais/metabolismo , Óxido Ferroso-Férrico/metabolismo , Geobacter/metabolismo , Oxirredução
17.
Chemistry ; 29(33): e202300763, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36988058

RESUMO

Fe catalyzed carbene insertion reactions present an efficient route for direct C-H functionalization. The use of Fe(III) in place of the widely used Fe(II) presents several benefits. However, the mechanistic understanding of Fe(III) severely lags behind Fe(II) complexes. One of the major unsolved issues relates to the formation of bridged versus terminal metallocarbenes. Even though the oxidized bridged carbenoid complexes have been isolated and found to be thermodynamically more stable, they are generally considered a dead end for the catalytic cycle. In the current report, the formation and the subsequent reactions of the bridged carbenoid complexes for an Fe(TPP)Cl catalyzed C(sp2 )-H insertion are investigated. Using DFT calculations, it is observed that both mono and bis oxidized bridged carbenoid complexes can participate in the catalytic cycle. Importantly, for the first time, a mechanistic pathway showing that these bridged species are not a dead end in Fe catalysis is presented. Their existence in other reactions might be more prevalent than what is currently believed. The current study will have important implications in utilizing Fe(III) complexes for other insertion reactions, especially for heme containing enzymes which necessarily need to be carried out under anaerobic/reducing conditions.


Assuntos
Compostos Férricos , Heme , Catálise , Compostos Ferrosos
18.
Chemistry ; 29(30): e202300100, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36929941

RESUMO

We report a trinuclear iron(III) cyanido-bridged complex trans-[CpMe3 FeIII (dppe)(CN)]2 [FeIII (LN4 )][PF6 ]4 (2[PF6 ]4 ) as the oxidation product of binuclear complex [CpMe3 (dppe)FeII CN-FeIII (LN4 )][PF6 ] (1[PF6 ]) (CpMe3 =1, 2, 4-trimethyl-1,3-cyclo-pentadienyl, dppe=1,2-bis(diphenylphosphino)ethane, LN4 =pentane-2,4-dione-bis(S-methylisothiosemicarbazonato). Complex 1[PF6 ] possesses an intermediate-spin five-coordinated FeIII (S=3/2) which couples antiferromagnetically to the π-radical ligand (L⋅N4 )2- and shows a LMCT (ligand to metal charge transfer) transition from (L⋅N4 )2- to FeIII and the FeII →FeIII MMCT transition. Upon oxidation of 1[PF6 ], (L⋅N4 )2- loses one electron to be the strong electron-attracting ligand (LOx N4 )- and the intermediate-spin five-coordinated FeIII (S=3/2) becomes a low-spin six-coordinated FeIII (S=1/2) in 2[PF6 ]4 . Also interestingly, 2[PF6 ]4 presents the coexistence of three different spin states (one S=3/2 and two S=1/2) and an uncommon FeIII →(LOx N4 )- MLCT transition, confirmed by the experimental results and supported by the TDDFT calculations.

19.
Environ Sci Technol ; 57(41): 15680-15692, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796760

RESUMO

Interactions between aqueous Fe(II) and solid Fe(III) oxy(hydr)oxide surfaces play determining roles in the fate of organic contaminants in nature. In this study, the adsorption of nalidixic acid (NA), a representative redox-inactive quinolone antibiotic, on synthetic goethite (α-FeOOH) and akaganéite (ß-FeOOH) was examined under varying conditions of pH and cation type and concentration, by means of adsorption experiments, attenuated total reflectance-Fourier transform infrared spectroscopy, surface complexation modeling (SCM), and powder X-ray diffraction. Batch adsorption experiments showed that Fe(II) had marginal effects on NA adsorption onto akaganéite but enhanced NA adsorption on goethite. This enhancement is attributed to the formation of goethite-Fe(II)-NA ternary complexes, without the need for heterogeneous Fe(II)-Fe(III) electron transfer at low Fe(II) loadings (2 Fe/nm2), as confirmed by SCM. However, higher Fe(II) loadings required a goethite-magnetite composite in the SCM to explain Fe(II)-driven recrystallization and its impact on NA binding. The use of a surface ternary complex by SCM was supported further in experiments involving Cu(II), a prevalent environmental metal incapable of transforming Fe(III) oxy(hydr)oxides, which was observed to enhance NA loadings on goethite. However, Cu(II)-NA aqueous complexation and potential Cu(OH)2 precipitates counteracted the formation of ternary surface complexes, leading to decreased NA loadings on akaganéite. These results have direct implications for the fate of organic contaminants, especially those at oxic-anoxic boundaries.


Assuntos
Compostos Férricos , Compostos de Ferro , Compostos Férricos/química , Ácido Nalidíxico , Compostos de Ferro/química , Minerais/química , Óxido Ferroso-Férrico , Adsorção
20.
Environ Sci Technol ; 57(50): 21190-21199, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051765

RESUMO

Bioreduction of Cr(VI) to Cr(III) is a promising technology for removing Cr(VI), but Cr(VI) reduction alone cannot support microbial growth. This study investigated the reduction of Cr(VI) in the presence of three electron acceptors that typically coexist with Cr(VI): NO3-, SO42-, and Fe(III). All three systems could reduce Cr(VI) to Cr(III), but the fate of Cr, its impacts on reduction of the other acceptors, and its impact on the microbial community differed. Although Cr(VI) was continuously removed in the NO3--reduction systems, batch tests showed that denitrification was inhibited primarily through impeding nitrite reduction. The SO42- and Fe(III) reduction systems reduced Cr(VI) using a combination of biotic and abiotic processes. Across all three systems, the abundance of genera capable of reducing Cr(VI) increased following the introduction of Cr(VI). Conversely, the abundance of genera that cannot reduce or resist Cr(VI) decreased, leading to restructuring of the microbial community. Furthermore, the abundance of sulfide oxidizers and Fe(II) oxidizers substantially increased after the introduction of chromate. This study provides fundamental knowledge about how Cr(VI) bioreduction interacts with bioreductions of three other co-contaminating electron acceptors.


Assuntos
Cromatos , Compostos Férricos , Cromatos/metabolismo , Oxirredução , Elétrons , Cromo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa