Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cereb Cortex ; 33(9): 5658-5670, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36411540

RESUMO

Cues in the environment signaling the absence of threat, i.e. safety, can influence both fear and reward-seeking behaviors. Heightened and maladaptive fear is associated with reduced activity in the medial prefrontal cortex. We have previously shown in male rats that the infralimbic (IL) prefrontal cortex is necessary for suppressing fear during a safety cue. The objective of the present study was to determine if there was safety cue-specific neural activity within the IL using a Pavlovian conditioning paradigm, where a fear cue was paired with shock, a safety cue was paired with no shock, and a reward cue was paired with sucrose. To investigate how safety cues can suppress fear, the fear and safety cues were presented together as a compound fear + safety cue. Single-unit activity showed a large proportion of neurons with excitatory responses to the fear + safety cue specifically, a separate group of neurons with excitatory responses to both the reward and fear + safety cues, and bidirectional neurons with excitation to the fear + safety cue and inhibition to the fear cue. Neural activity was also found to be negatively correlated with freezing during the fear + safety cue. Together, these data implicate the IL in encoding specific aspects of conditioned inhibitors when fear is being actively suppressed.


Assuntos
Sinais (Psicologia) , Córtex Pré-Frontal , Ratos , Masculino , Animais , Ratos Long-Evans , Córtex Pré-Frontal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia
2.
J Neurosci ; 38(39): 8313-8328, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30093537

RESUMO

The medial prefrontal cortex and the basolateral amygdala (BLA) are essential for discriminating between harmful and safe stimuli. The primary auditory cortex (Te1) sends projections to both sites, but whether and how it interacts with these areas during fear discrimination are poorly understood. Here we show that in male rats that can differentiate between a new tone and a threatening one, the selective optogenetic inhibition of Te1 axon terminals into the prelimbic (PL) cortex shifted discrimination to fear generalization. Meanwhile, no effects were detected when Te1 terminals were inhibited in the BLA. Using a combination of local field potential and multiunit recordings, we show that in animals that discriminate successfully between a new tone and a harmful one, the activity of the Te1 and the PL cortex becomes immediately and tightly synchronized in the slow-gamma range (40-70 Hz) at the onset of the new tone. This enhanced synchronization was not present in other frequency ranges, such as the theta range. Critically, the level of gamma synchrony predicted the behavioral choice (i.e., no freezing or freezing) of the animals. Moreover, in the same rats, gamma synchrony was absent before the fear-learning trial and when animals should discriminate between an olfactory stimulus and the auditory harmful one. Thus, our findings reveal that the Te1 and the PL cortex dynamically establish a functional connection during auditory fear-discrimination processes, and that this corticocortical oscillatory mechanism drives the behavioral choice of the animals.SIGNIFICANCE STATEMENT Identifying neural networks that infer safety versus danger is of great interest in the scientific field. Fear generalization reduces the chances of an animal's survival and leads to psychiatric diseases, such as post-traumatic stress disorders and phobias in humans. Here we demonstrate that animals able to differentiate a new tone from a previous threating tone showed synchronization between the prefrontal and primary auditory cortices. Critically, this connectivity precedes and predicts the behavioral outcome of the animal. Optogenetic inhibition of this functional connectivity leads to fear generalization. To the best of our knowledge, this study is the first to demonstrate that a corticocortical dialogue occurring between sensory and prefrontal areas is a key node for fear-discrimination processes.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Discriminação Psicológica/fisiologia , Medo/fisiologia , Ritmo Gama , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico , Sincronização Cortical , Generalização Psicológica , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Ratos Wistar
3.
J Neurosci ; 38(9): 2372-2384, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29386258

RESUMO

Adult hippocampal neurogenesis has been shown to be required for certain types of cognitive function. For example, studies have shown that these neurons are critical for pattern separation, the ability to store similar experiences as distinct memories. Although traumatic brain injury (TBI) has been shown to cause the loss of newborn hippocampal neurons, the signaling pathway(s) that triggers their death is unknown. Endoplasmic reticulum (ER) stress activates the PERK-eIF2α pathway that acts to restore ER function and improve cell survival. However, unresolved/intense ER stress activates C/EBP homologous protein (CHOP), leading to cell death. We show that TBI causes the death of hippocampal newborn neurons via CHOP. Using CHOP KO mice, we show that loss of CHOP markedly reduces newborn neuron loss after TBI. Injured CHOP mice performed significantly better in a context fear discrimination task compared with injured wild-type mice. In contrast, the PERK inhibitor GSK2606414 exacerbated doublecortin cell loss and worsened contextual discrimination. Administration of guanabenz (which reduces ER stress) to injured male rats reduced the loss of newborn neurons and improved one-trial contextual fear memory. Interestingly, we also found that the surviving newborn neurons in brain-injured animals had dendritic loss, which was not observed in injured CHOP KO mice or in animals treated with guanabenz. These results indicate that ER stress plays a key role in the death of newborn neurons after TBI. Further, these findings indicate that ER stress can alter dendritic arbors, suggesting a role for ER stress in neuroplasticity and dendritic pathologies.SIGNIFICANCE STATEMENT The hippocampus, a structure in the temporal lobe, is critical for learning and memory. The hippocampus is one of only two areas in which neurons are generated in the adult brain. These newborn neurons are required for certain types of memory, and are particularly vulnerable to traumatic brain injury (TBI). However, the mechanism(s) that causes the loss of these cells after TBI is poorly understood. We show that endoplasmic reticulum (ER) stress pathways are activated in newborn neurons after TBI, and that manipulation of the CHOP cascade improves newborn neuron survival and cognitive outcome. These results suggest that treatments that prevent/resolve ER stress may be beneficial in treating TBI-triggered memory dysfunction.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Estresse do Retículo Endoplasmático/fisiologia , Neurônios/patologia , Fator de Transcrição CHOP/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular/fisiologia , Proteína Duplacortina , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Neurobiol Learn Mem ; 157: 79-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521851

RESUMO

HIF-1α is a hypoxia-inducible protein that regulates many cellular processes, including neural stem cell maintenance. Previous work demonstrated constitutive stabilization of HIF-1α in neural stem cells (NSCs) of the adult mouse subventricular zone (SVZ) and hippocampal subgranular zone (SGZ). Genetic inactivation of NSC-encoded HIF-1α in the adult SVZ results in gradual loss of NSCs, but whether HIF-1α is required for the maintenance of SGZ hippocampal progenitors and adult hippocampal neurogenesis has not been determined. Here we tested the hypothesis that HIF-1α plays an essential role in the maintenance of adult hippocampal neurogenesis using Nestin-CreERT2/R26R-YFP/Hif1afl/fl triple transgenic mice, in which HIF-1α was genetically inactivated in nestin+ hippocampal progenitors and their downstream progeny following tamoxifen exposure. We found that disruption of HIF-1α gene expression resulted in a marked 50% reduction of adult-generated dentate granule cells (DGCs) that was highly correlated with impaired hippocampal function, as assessed using two behavioral assays of pattern discrimination. These behavioral tests included the A-B contextual fear-conditioning task and the trial-unique, delayed nonmatching-to-location (TUNL) touch-screen operant chamber task. Our findings identify HIF-1α as a novel regulator of adult hippocampal neurogenesis under non-pathological conditions, and underscore the importance of neurogenesis for pattern discrimination learning.


Assuntos
Aprendizagem por Discriminação/fisiologia , Hipocampo/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neurogênese , Animais , Condicionamento Clássico , Medo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais , Reconhecimento Visual de Modelos
5.
Hippocampus ; 28(10): 735-744, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29995325

RESUMO

Adult neurogenesis is necessary for proper cognition and behavior, however, the mechanisms that underlie the integration and maturation of newborn neurons into the pre-existing hippocampal circuit are not entirely known. In this study, we sought to determine the role of action potential (AP)-dependent synaptic transmission by adult-generated dentate granule cells (DGCs) in their survival and function within the existing circuitry. We used a triple transgenic mouse (NestinCreERT2 :Snap25fl/fl : tdTomato) to inducibly inactivate AP-dependent synaptic transmission within adult hippocampal progenitors and their progeny. Behavioral testing in a hippocampal-dependent A/B contextual fear-discrimination task revealed impaired discrimination learning in mice harboring SNAP-25-deficient adult-generated dentate granule cells (DGCs). Despite poor performance on this neurogenesis-dependent task, the production and survival of newborn DGCs was quantitatively unaltered in tamoxifen-treated NestinCreERT2 :Snap25fl/fl : tdTomato SNAP compared to tamoxifen-treated NestinCreERT2 :Snap25wt/wt : tdTomato control mice. Although SNAP-25-deficient adult DGCs displayed a small but statistically significant enhancement in proximal dendritic branching, their overall dendritic length and distal branching complexity was unchanged. SNAP-25-deficient newborn DGCs also displayed robust efferent mossy fiber output to CA3, with normal linear density of large mossy fiber terminals (LMTs). These studies suggest that AP-dependent neurotransmitter release by newborn DGCs is not essential for their survival or rudimentary structural maturation within the adult hippocampus.


Assuntos
Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Deficiências da Aprendizagem/genética , Neurogênese/fisiologia , Neurônios/fisiologia , Proteína 25 Associada a Sinaptossoma/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Medo/fisiologia , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Deficiências da Aprendizagem/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Transfecção
6.
Neurobiol Learn Mem ; 119: 52-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25615540

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.


Assuntos
Medo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condicionamento Psicológico/fisiologia , Discriminação Psicológica/fisiologia , Extinção Psicológica/fisiologia , Feminino , Técnicas de Inativação de Genes , Generalização da Resposta/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética
7.
Cell Rep ; 42(7): 112678, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379214

RESUMO

Amygdala circuitry encodes associations between conditioned stimuli and aversive unconditioned stimuli and also controls fear expression. However, whether and how non-threatening information for unpaired conditioned stimuli (CS-) is discretely processed remains unknown. The fear expression toward CS- is robust immediately after fear conditioning but then becomes negligible after memory consolidation. The synaptic plasticity of the neural pathway from the lateral to the anterior basal amygdala gates the fear expression of CS-, depending upon neuronal PAS domain protein 4 (Npas4)-mediated dopamine receptor D4 (Drd4) synthesis, which is precluded by stress exposure or corticosterone injection. Herein, we show cellular and molecular mechanisms that regulate the non-threatening (safety) memory consolidation, supporting the fear discrimination.


Assuntos
Consolidação da Memória , Memória/fisiologia , Condicionamento Clássico/fisiologia , Plasticidade Neuronal/fisiologia , Tonsila do Cerebelo/fisiologia , Dopamina
8.
Artigo em Inglês | MEDLINE | ID: mdl-36152737

RESUMO

Fear memory is critical for individual survival. However, the maladaptive fear response is one of the hallmarks of fear-related disorders, which is characterized by the failure to discriminate threatening signals from neutral or safe cues. The biological mechanisms of fear discrimination remain to be clarified. In this study, we found that the nucleus accumbens (NAc) was indispensable for the formation of cued fear memory in mice, during which the expression of DNA methyltransferase 3a gene (DNMT3a) increased. Injection of Zebularine, a nonspecific DNMT inhibitor, into NAc immediately after conditioning induced a maladaptive fear response to neutral cue (CS-). Using whole-genome bisulfite sequencing (WGBS), differentially methylated sites and methylated regions (DMRs) were investigated. 16,226 DMRs in the genenome were identified, in which, 214 genes with significant differences in their methylation levels and mRNA expression profiles were identified through correlation analysis. Notably, 15 genes were synaptic function-related and 8 genes were enriched in the cGMP-PKG signaling pathway. Moreover, inhibition of PKG impaired fear discrimination. Together, our results revealed the profile and role of genome-wide DNA methylation in NAc in the regulation of fear discrimination.


Assuntos
Metilação de DNA , Núcleo Accumbens , Animais , Camundongos , RNA-Seq , Medo , RNA Mensageiro
9.
Front Neurosci ; 16: 852010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527817

RESUMO

(R,S)-ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that was originally developed as an anesthetic. Most recently, (R,S)-ketamine has been used as a rapid-acting antidepressant, and we have reported that (R,S)-ketamine can also be a prophylactic against stress in adult mice. However, most pre-clinical studies have been performed in adult mice. It is still unknown how an acute (R,S)-ketamine injection influences behavior across the lifespan (e.g., to adolescent or aged populations). Here, we administered saline or (R,S)-ketamine at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes. One hour later, behavioral despair, avoidance, locomotion, perseverative behavior, or contextual fear discrimination (CFD) was assessed. A separate cohort of mice was sacrificed 1 h following saline or (R,S)-ketamine administration. Brains were processed to quantify the marker of inflammation Cyclooxygenase 2 (Cox-2) expression to determine whether the acute effects of (R,S)-ketamine were partially mediated by changes in brain inflammation. Our findings show that (R,S)-ketamine reduced behavioral despair and perseverative behavior in adolescent female, but not male, mice and facilitated CFD in both sexes at specific doses. (R,S)-ketamine reduced Cox-2 expression specifically in ventral CA3 (vCA3) of male mice. Notably, (R,S)-ketamine was not effective in aged mice. These results underscore the need for sex- and age-specific approaches to test (R,S)-ketamine efficacy across the lifespan.

10.
Behav Brain Res ; 399: 112974, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33144178

RESUMO

Animals organize reward seeking around aversive events. An abundance of research shows that foot shock, as well as a shock-associated cue, can elicit freezing and suppress reward seeking. Yet, there is evidence that experience can flip the effect of foot shock to facilitate reward seeking. Here we examined cue suppression, foot shock suppression and foot shock facilitation of reward seeking in a single behavioural setting. Male Long Evans rats received fear discrimination consisting of danger, uncertainty, and safety cues. Discrimination took place over a baseline of rewarded nose poking. With limited experience (1-2 sessions), all cues and foot shock suppressed reward seeking. With continued experience (10-16 sessions), suppression became specific to shock-associated cues, foot shock briefly suppressed, then facilitated reward seeking. Our results provide a means of assessing positive properties of foot shock, and may provide insight into maladaptive behaviour around aversive events.


Assuntos
Comportamento Animal/fisiologia , Aprendizagem por Discriminação/fisiologia , Medo/fisiologia , Recompensa , Transferência de Experiência/fisiologia , Animais , Sinais (Psicologia) , Estimulação Elétrica , Masculino , Ratos , Ratos Long-Evans
11.
Behav Brain Res ; 396: 112884, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871228

RESUMO

Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.


Assuntos
Núcleo Central da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Aprendizagem por Discriminação/fisiologia , Medo/fisiologia , Núcleos Septais/fisiologia , Caracteres Sexuais , Animais , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Septais/metabolismo
12.
Behav Brain Res ; 397: 112907, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32956774

RESUMO

Generalized fear is one purported mechanism of anxiety that is a target of clinical and basic research. Impaired fear discrimination has been primarily examined from the perspective of increased fear learning, rather than how learning about non-threatening stimuli affects fear discrimination. To address this question, we tested how three Safety Conditioning protocols with varied levels of salience allocated to the safety cue compared to classic Fear Conditioning in their impact on subsequent innate anxiety, and differential fear learning of new aversive and neutral cues. Using a high anxiety strain of mice (129SvEv, Taconic), we show that Fear Conditioned animals show little exploration of the anxiogenic center of an open field 24 h later, and poor discrimination during new differential conditioning 7 days later. Three groups of mice underwent Safety Conditioning, (i) the safety tone was unpaired with a shock, (ii) the safety tone was unpaired with the shock and co-terminated with a house light signaling the end of the safety period, and (iii) the safety tone was unpaired with the shock and its beginning co-occurred with a house light, signaling the start of a safety period. Mice from all Safety Conditioning groups showed higher levels of open field exploration than the Fear Conditioned mice 24 h after training. Furthermore, Safety Conditioned animals showed improved discrimination learning of a novel non-threat, with the Salient Beginning safety conditioned group performing best. These findings indicate that high anxiety animals benefit from salient safety training to improve exploration and discrimination of new non-threating stimuli.


Assuntos
Ansiedade/fisiopatologia , Condicionamento Clássico/fisiologia , Aprendizagem por Discriminação/fisiologia , Regulação Emocional/fisiologia , Medo/fisiologia , Segurança , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos da Linhagem 129
13.
Cell Rep ; 30(7): 2360-2373.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075769

RESUMO

Considerable work emphasizes a role for hippocampal circuits in governing contextual fear discrimination. However, the intra- and extrahippocampal pathways that route contextual information to cortical and subcortical circuits to guide adaptive behavioral responses are poorly understood. Using terminal-specific optogenetic silencing in a contextual fear discrimination learning paradigm, we identify opposing roles for dorsal CA3-CA1 (dCA3-dCA1) projections and dorsal CA3-dorsolateral septum (dCA3-DLS) projections in calibrating fear responses to certain and ambiguous contextual threats, respectively. Ventral CA3-DLS (vCA3-DLS) projections suppress fear responses in both certain and ambiguous contexts, whereas ventral CA3-CA1 (vCA3-vCA1) projections promote fear responses in both these contexts. Lastly, using retrograde monosynaptic tracing, ex vivo electrophysiological recordings, and optogenetics, we identify a sparse population of DLS parvalbumin (PV) neurons as putative relays of dCA3-DLS projections to diverse subcortical circuits. Taken together, these studies illuminate how distinct dCA3 and vCA3 outputs calibrate contextual fear discrimination.


Assuntos
Região CA3 Hipocampal/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Animais , Humanos , Masculino , Camundongos
14.
Front Neurosci ; 14: 583878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071751

RESUMO

The nonapeptide, oxytocin (OT), known for its role in social bonding and attachment formation, has demonstrated anxiolytic properties in animal models and human studies. However, its role in the regulation of fear responses appears more complex, brain site-specific, sex-specific, and dependent on a prior stress history. Studies have shown that OT neurons in the hypothalamus are activated during cued and contextual fear conditioning and during fear recall, highlighting the recruitment of endogenous oxytocin system in fear learning. OT is released into the extended amygdala, which contains the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), both critical for the regulation of fear and anxiety-like behaviors. Behavioral studies report that OT in the CeA reduces contextual fear responses; whereas in the BNST, OT receptor (OTR) neurotransmission facilitates cued fear and reduces fear responses to un-signaled, diffuse threats. These ostensibly contrasting behavioral effects support growing evidence that OT works to promote fear discrimination by reducing contextual fear or fear of diffuse threats, yet strengthening fear responses to imminent and predictable threats. Recent studies from the basolateral nucleus of the amygdala (BLA) support this notion and show that activation of OTR in the BLA facilitates fear discrimination by increasing fear responses to discrete cues. Also, OTR transmission in the CeA has been shown to mediate a switch from passive freezing to active escape behaviors in confrontation with an imminent, yet escapable threat but reduce reactivity to distant threats. Therefore, OT appears to increase the salience of relevant threat-signaling cues yet reduce fear responses to un-signaled, distant, or diffuse threats. Lastly, OTR signaling has been shown to underlie emotional discrimination between conspecifics during time of distress, social transmission of fear, and social buffering of fear. As OT has been shown to enhance salience of both positive and negative social experiences, it can also serve as a warning system against potential threats in social networks. Here, we extend the social salience hypothesis by proposing that OT enhances the salience of relevant environmental cues also in non-social contexts, and as such promotes active defensive behaviors.

15.
Behav Brain Res ; 360: 169-184, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30502356

RESUMO

Fear discrimination is critical for survival, while fear generalization is effective for avoiding dangerous situations. Overgeneralized fear is a typical symptom of anxiety disorders, including generalized anxiety disorder and posttraumatic stress disorder (PTSD). Previous research demonstrated that fear discrimination learning is mediated by prefrontal mechanisms. While the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) are recognized for their excitatory and inhibitory effects on the fear circuit, respectively, the mechanisms driving fear discrimination are unidentified. To obtain insight into the mechanisms underlying context-specific fear discrimination, we investigated prefrontal neuronal ensembles representing distinct experiences associated with learning to disambiguate between dangerous and similar, but not identical, harmless stimuli. Here, we show distinct quantitative activation differences in response to conditioned and generalized fear experiences, as well as modulation of the neuronal ensembles associated with successful acquisition of context-safety contingencies. These findings suggest that prefrontal neuronal ensembles patterns code functional context-danger and context-safety relationships. The PL subdivision of the mPFC monitors context-danger associations to conditioned fear, whereas differential conditioning sparks additional ensembles associated with the inhibition of generalized fear in both the PL and IL subdivisions of the mPFC. Our data suggest that fear discrimination learning is associated with the modulation of prefrontal subpopulations in a subregion- and experience-specific fashion, and the learning of appropriate responses to conditioned and initially generalized fear experiences is driven by gradual updating and rebalancing of the prefrontal memory representations.


Assuntos
Condicionamento Clássico/fisiologia , Discriminação Psicológica/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Complexo Relacionado com a AIDS/genética , Complexo Relacionado com a AIDS/metabolismo , Análise de Variância , Animais , Doxiciclina/farmacologia , Reação de Congelamento Cataléptica/fisiologia , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfopiruvato Hidratase/metabolismo , Fatores de Tempo
16.
Neuron ; 97(4): 898-910.e6, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29398355

RESUMO

Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process that is thought to depend on the prefrontal cortex to integrate sensory information from the environment and regulate adaptive responses to threat during uncertainty. However, the precise prefrontal circuits necessary for discriminating a previously threatening context from a neutral context remain unknown. Using a combination of single-unit recordings and optogenetic manipulations, we identified a neuronal subpopulation in the dorsal medial prefrontal cortex (dmPFC) that projects to the lateral and ventrolateral periaqueductal gray (l/vlPAG) and is selectively activated during contextual fear discrimination. Moreover, optogenetic activation and inhibition of this neuronal population promoted contextual fear discrimination and generalization, respectively. Our results identify a subpopulation of dmPFC-l/vlPAG-projecting neurons that control switching between different emotional states during contextual discrimination.


Assuntos
Discriminação Psicológica/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Generalização Psicológica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética
17.
Psychiatry Res ; 267: 195-200, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29913378

RESUMO

Fear-potentiated startle (FPS) paradigms provide insight into fear learning mechanisms that contribute to impairment among individuals with posttraumatic stress symptoms (PTSS). Electrophysiology also has provided insight into these mechanisms through the examination of event-related potentials (ERPs) such as the P100 and LPP. It remains unclear, however, whether the P100 and LPP may be related to fear learning processes within the FPS paradigm. To this end, we tested differences in ERP amplitudes for conditioned stimuli associated (CS+) and not associated (CS-) with an aversive unconditioned stimulus (US) during fear acquisition. Participants included 54 female undergraduate students (mean age = 20.26). The FPS response was measured via electromyography of the orbicularis oculi muscle. EEG data were collected during the FPS paradigm. While the difference between CS+ and CS- P100 amplitude was not significant, LPP amplitudes were significantly enhanced following the CS+ relative to CS-. Furthermore, the LPP difference wave (CS+ minus CS-) was associated with FPS scores for the CS- during the later portion of fear acquisition. These findings suggest that conditioned stimuli may have altered emotional encoding (LPP) during the FPS paradigm. Thus, the LPP may be a promising neurophysiological marker that is related to fear learning processes.


Assuntos
Medo/fisiologia , Medo/psicologia , Aprendizagem/fisiologia , Reflexo de Sobressalto/fisiologia , Adolescente , Adulto , Condicionamento Clássico/fisiologia , Eletroencefalografia/métodos , Eletromiografia/métodos , Feminino , Humanos , Masculino , Neurofisiologia , Estudantes/psicologia , Adulto Jovem
18.
Brain Behav ; 7(9): e00796, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28948089

RESUMO

INTRODUCTION: Significant enhancement of neurogenesis is known to occur in response to a variety of brain insults such as traumatic brain injury. Previous studies have demonstrated that injury-induced newborn neurons are required for hippocampus-dependent spatial learning and memory tasks like the Morris water maze, but not in contextual fear conditioning that requires both the hippocampus and amygdala. Recently, the dentate gyrus, where adult hippocampal neurogenesis occurs, has been implicated in processing information to form specific memory under specific environmental stimuli in a process known as pattern separation. METHODS: To test whether injury-induced newborn neurons facilitate pattern separation, hippocampus-dependent contextual fear discrimination was performed using delta-HSV-TK transgenic mice, which can temporally inhibit injury-induced neurogenesis under the control of ganciclovir. RESULTS: We observed that impaired neurogenesis enhanced the ability to distinguish aversive from naïve environments. In addition, this occurs most significantly following injury, but only in a context-dependent manner whereby the sequence of introducing the naïve environment from the aversive one affected the performance differentially. CONCLUSIONS: Temporal impairment of both baseline and injury-induced adult neurogenesis enhances performance in fear discrimination in a context-dependent manner.


Assuntos
Giro Denteado/fisiologia , Discriminação Psicológica/fisiologia , Medo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Giro Denteado/citologia , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia
19.
J Exp Neurosci ; 9: 53-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244030

RESUMO

Normal brain functioning relies critically on the ability to control appropriate behavioral responses to fearful stimuli. Overgeneralized fear is the major symptom of anxiety disorders including posttraumatic stress disorder. This review describes recent data demonstrating that the medial prefrontal cortex (mPFC) plays a critical role in the refining of cues that drive the acquisition of fear response. Recent studies on molecular mechanisms that underlie the role of mPFC in fear discrimination learning are discussed. These studies suggest that prefrontal N-methyl-D-aspartate receptors expressed in excitatory neurons govern fear discrimination learning via a mechanism involving cAMP response element-binding protein-dependent engagement of acetyltransferase.

20.
Genes Brain Behav ; 14(1): 22-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25287656

RESUMO

Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories.


Assuntos
Condicionamento Clássico , Medo , Córtex Pré-Frontal/fisiologia , Animais , Conectoma , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa