Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Gastroenterology ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735402

RESUMO

BACKGROUND & AIMS: Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel disease are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut-barrier integrity and susceptibility to colitis is currently elusive. METHODS: Age-matched PKO and wild-type littermates were administered 3.5% dextran sulfate sodium in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. Messenger RNA and protein expression of tight junction proteins were determined by reverse transcription polymerase chain reaction and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression, and hematoxylin and eosin staining. Gut microbiome and associated metabolome were analyzed by 16S ribosomal RNA sequencing and mass spectrometry, respectively. RESULTS: PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to dextran sulfate sodium treatment. In addition, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared with controls. Co-housing wild-type and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of tight junction proteins in the colons of wild-type mice. CONCLUSIONS: Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut-barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut-barrier integrity, and its deficiency appears to contribute to the pathogenesis of inflammatory bowel diseases.

2.
Gastroenterology ; 164(2): 272-288, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36155191

RESUMO

BACKGROUND & AIMS: We investigate interrelationships between gut microbes, metabolites, and cytokines that characterize COVID-19 and its complications, and we validate the results with follow-up, the Japanese 4D (Disease, Drug, Diet, Daily Life) microbiome cohort, and non-Japanese data sets. METHODS: We performed shotgun metagenomic sequencing and metabolomics on stools and cytokine measurements on plasma from 112 hospitalized patients with SARS-CoV-2 infection and 112 non-COVID-19 control individuals matched by important confounders. RESULTS: Multiple correlations were found between COVID-19-related microbes (eg, oral microbes and short-chain fatty acid producers) and gut metabolites (eg, branched-chain and aromatic amino acids, short-chain fatty acids, carbohydrates, neurotransmitters, and vitamin B6). Both were also linked to inflammatory cytokine dynamics (eg, interferon γ, interferon λ3, interleukin 6, CXCL-9, and CXCL-10). Such interrelationships were detected highly in severe disease and pneumonia; moderately in the high D-dimer level, kidney dysfunction, and liver dysfunction groups; but rarely in the diarrhea group. We confirmed concordances of altered metabolites (eg, branched-chain amino acids, spermidine, putrescine, and vitamin B6) in COVID-19 with their corresponding microbial functional genes. Results in microbial and metabolomic alterations with severe disease from the cross-sectional data set were partly concordant with those from the follow-up data set. Microbial signatures for COVID-19 were distinct from diabetes, inflammatory bowel disease, and proton-pump inhibitors but overlapping for rheumatoid arthritis. Random forest classifier models using microbiomes can highly predict COVID-19 and severe disease. The microbial signatures for COVID-19 showed moderate concordance between Hong Kong and Japan. CONCLUSIONS: Multiomics analysis revealed multiple gut microbe-metabolite-cytokine interrelationships in COVID-19 and COVID-19related complications but few in gastrointestinal complications, suggesting microbiota-mediated immune responses distinct between the organ sites. Our results underscore the existence of a gut-lung axis in COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudos Transversais , SARS-CoV-2 , Fezes/química , Imunidade , Citocinas , Vitamina B 6/análise
3.
J Transl Med ; 22(1): 360, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632606

RESUMO

BACKGROUND: Preeclampsia is a pregnancy-specific disease leading to maternal and perinatal morbidity. Hypertension and inflammation are the main characteristics of preeclampsia. Many factors can lead to hypertension and inflammation, including gut microbiota which plays an important role in hypertension and inflammation in humans. However, alterations to the gut microbiome and fecal metabolome, and their relationships in severe preeclampsia are not well known. This study aims to identify biomarkers significantly associated with severe preeclampsia and provide a knowledge base for treatments regulating the gut microbiome. METHODS: In this study, fecal samples were collected from individuals with severe preeclampsia and healthy controls for shotgun metagenomic sequencing to evaluate changes in gut microbiota composition. Quantitative polymerase chain reaction analysis was used to validate the reliability of our shotgun metagenomic sequencing results. Additionally, untargeted metabolomics analysis was performed to measure fecal metabolome concentrations. RESULTS: We identified several Lactobacillaceae that were significantly enriched in the gut of healthy controls, including Limosilactobacillus fermentum, the key biomarker distinguishing severe preeclampsia from healthy controls. Limosilactobacillus fermentum was significantly associated with shifts in KEGG Orthology (KO) genes and KEGG pathways of the gut microbiome in severe preeclampsia, such as flagellar assembly. Untargeted fecal metabolome analysis found that severe preeclampsia had higher concentrations of Phenylpropanoate and Agmatine. Increased concentrations of Phenylpropanoate and Agmatine were associated with the abundance of Limosilactobacillus fermentum. Furthermore, all metabolites with higher abundances in healthy controls were enriched in the arginine and proline metabolism pathway. CONCLUSION: Our research indicates that changes in metabolites, possibly due to the gut microbe Limosilactobacillus fermentum, can contribute to the development of severe preeclampsia. This study provides insights into the interaction between gut microbiome and fecal metabolites and offers a basis for improving severe preeclampsia by modulating the gut microbiome.


Assuntos
Agmatina , Microbioma Gastrointestinal , Hipertensão , Pré-Eclâmpsia , Complicações na Gravidez , Feminino , Gravidez , Humanos , Microbioma Gastrointestinal/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metaboloma , Inflamação , Bactérias , RNA Ribossômico 16S
4.
J Transl Med ; 22(1): 202, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403655

RESUMO

BACKGROUND: The relationship between the gut mycobiome and end-stage renal disease (ESRD) remains largely unexplored. METHODS: In this study, we compared the gut fungal populations of 223 ESRD patients and 69 healthy controls (HCs) based on shotgun metagenomic sequencing data, and analyzed their associations with host serum and fecal metabolites. RESULTS: Our findings revealed that ESRD patients had a higher diversity in the gut mycobiome compared to HCs. Dysbiosis of the gut mycobiome in ESRD patients was characterized by a decrease of Saccharomyces cerevisiae and an increase in various opportunistic pathogens, such as Aspergillus fumigatus, Cladophialophora immunda, Exophiala spinifera, Hortaea werneckii, Trichophyton rubrum, and others. Through multi-omics analysis, we observed a substantial contribution of the gut mycobiome to host serum and fecal metabolomes. The opportunistic pathogens enriched in ESRD patients were frequently and positively correlated with the levels of creatinine, homocysteine, and phenylacetylglycine in the serum. The populations of Saccharomyces, including the HC-enriched Saccharomyces cerevisiae, were frequently and negatively correlated with the levels of various toxic metabolites in the feces. CONCLUSIONS: Our results provided a comprehensive understanding of the associations between the gut mycobiome and the development of ESRD, which had important implications for guiding future therapeutic studies in this field.


Assuntos
Microbioma Gastrointestinal , Falência Renal Crônica , Micobioma , Humanos , Saccharomyces cerevisiae , Fezes/microbiologia , Metaboloma
5.
J Chem Ecol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758510

RESUMO

The ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.

6.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999973

RESUMO

Several hepatic disorders are influenced by gut microbiota, but its role in idiosyncratic drug-induced liver injury (iDILI), whose main causative agent is amoxicillin-clavulanate, remains unknown. This pioneering study aims to unravel particular patterns of gut microbiota composition and associated metabolites in iDILI and iDILI patients by amoxicillin-clavulanate (iDILI-AC). Thus, serum and fecal samples from 46 patients were divided into three study groups: healthy controls (n = 10), non-iDILI acute hepatitis (n = 12) and iDILI patients (n = 24). To evaluate the amoxicillin-clavulanate effect, iDILI patients were separated into two subgroups: iDILI non-caused by amoxicillin-clavulanate (iDILI-nonAC) (n = 18) and iDILI-AC patients (n = 6). Gut microbiota composition and fecal metabolome plus serum and fecal bile acid (BA) analyses were performed, along with correlation analyses. iDILI patients presented a particular microbiome profile associated with reduced fecal secondary BAs and fecal metabolites linked to lower inflammation, such as dodecanedioic acid and pyridoxamine. Moreover, certain taxa like Barnesiella, Clostridia UCG-014 and Eubacterium spp. correlated with significant metabolites and BAs. Additionally, comparisons between iDILI-nonAC and iDILI-AC groups unraveled unique features associated with iDILI when caused by amoxicillin-clavulanate. In conclusion, specific gut microbiota profiles in iDILI and iDILI-AC patients were associated with particular metabolic and BA status, which could affect disease onset and progression.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas , Fezes , Microbioma Gastrointestinal , Metaboloma , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Ácidos e Sais Biliares/metabolismo , Combinação Amoxicilina e Clavulanato de Potássio/efeitos adversos , Masculino , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Feminino , Metaboloma/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto , Idoso
7.
Pharmacol Res ; 191: 106755, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019193

RESUMO

Chronic constipation (CC) is a common gastrointestinal condition associated with intestinal inflammation, and the condition considerably impairs patients' quality of life. We conducted a large-scale 42-day randomized, double-blind, placebo-controlled trial to investigate the effect of probiotics in alleviating CC. 163 patients diagnosed with CC (following Rome IV criteria) were randomly divided into probiotic (n = 78; received Lactiplantibacillus plantarum P9 [P9]; 1 ×1011 CFU/day) and placebo (n = 85; received placebo material) groups. Ingesting P9 significantly improved the weekly mean frequency of complete spontaneous bowel movements (CSBMs) and spontaneous bowel movements (SBMs), while significantly reducing the level of worries and concerns (WO; P < 0.05). Comparing with the placebo group, P9 group was significantly enriched in potentially beneficial bacteria (Lactiplantibacillus plantarum and Ruminococcus_B gnavus), while depriving of several bacterial and phage taxa (Oscillospiraceae sp., Lachnospiraceae sp., and Herelleviridae; P < 0.05). Interesting significant correlations were also observed between some clinical parameters and subjects' gut microbiome, including: negative correlation between Oscillospiraceae sp. and SBMs; positive correlation between WO and Oscillospiraceae sp., Lachnospiraceae sp. Additionally, P9 group had significantly (P < 0.05) more predicted gut microbial bioactive potential involved in the metabolism of amino acids (L-asparagine, L-pipecolinic acid), short-/medium-chain fatty acids (valeric acid and caprylic acid). Furthermore, several metabolites (p-cresol, methylamine, trimethylamine) related to the intestinal barrier and transit decreased significantly after P9 administration (P < 0.05). In short, the constipation relief effect of P9 intervention was accompanied by desirable changes in the fecal metagenome and metabolome. Our findings support the notion of applying probiotics in managing CC.


Assuntos
Gastroenteropatias , Lactobacillales , Probióticos , Humanos , Qualidade de Vida , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/microbiologia , Fezes/microbiologia , Método Duplo-Cego , Probióticos/uso terapêutico , Resultado do Tratamento
8.
J Environ Sci (China) ; 127: 530-540, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522083

RESUMO

To protect the wellbeing of research animals, certain non-invasive measures are in increasing need to facilitate an early diagnosis of health and toxicity. In this study, feces specimen was collected from adult zebrafish to profile the metabolome fingerprint. Variability in fecal metabolite composition was also distinguished as a result of aging, perfluorobutanesulfonate (PFBS) toxicant, and fecal transplantation. The results showed that zebrafish feces was very rich in a diversity of metabolites that belonged to several major classes, including lipid, amino acid, carbohydrate, vitamin, steroid hormone, and neurotransmitter. Fecal metabolites had functional implications to multiple physiological activities, which were characterized by the enrichment of digestion, absorption, endocrine, and neurotransmission processes. The high richness and functional involvement of fecal metabolites pinpointed feces as an abundant source of diagnostic markers. By comparison between young and aged zebrafish, fundamental modifications of fecal metabolomes were caused by aging progression, centering on the neuroactive ligand-receptor interaction pathway. Exposure of aged zebrafish to PFBS pollutant also significantly disrupted the metabolomic structure in feces. Of special concern were the changes in fecal hormone intermediates after PFBS exposure, which was concordant with the in vivo endocrine disrupting effects of PFBS. Furthermore, it was intriguing that transplantation of young zebrafish feces efficiently mitigated the metabolic perturbation of PFBS in aged recipients, highlighting the health benefits of therapeutic strategies based on gut microbiota manipulation. In summary, the present study provides preliminary clues to evidence the non-invasive advantage of fecal metabolomics in the early diagnosis and prediction of physiology and toxicology.


Assuntos
Poluentes Ambientais , Peixe-Zebra , Animais , Transplante de Microbiota Fecal , Poluentes Ambientais/análise , Metaboloma , Fezes , Metabolômica , Hormônios/análise
9.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499163

RESUMO

Insufficient sleep is becoming increasingly common and contributes to many health issues. To combat sleepiness, caffeine is consumed daily worldwide. Thus, caffeine consumption and sleep restriction often occur in succession. The gut microbiome can be rapidly affected by either one's sleep status or caffeine intake, whereas the synergistic effects of a persistent caffeine-induced sleep restriction remain unclear. In this study, we investigated the impact of a chronic caffeine-induced sleep restriction on the gut microbiome and its metabolic profiles in mice. Our results revealed that the proportion of Firmicutes and Bacteroidetes was not altered, while the abundance of Proteobacteria and Actinobacteria was significantly decreased. In addition, the content of the lipids was abundant and significantly increased. A pathway analysis of the differential metabolites suggested that numerous metabolic pathways were affected, and the glycerophospholipid metabolism was most significantly altered. Combined analysis revealed that the metabolism was significantly affected by variations in the abundance and function of the intestinal microorganisms and was closely relevant to Proteobacteria and Actinobacteria. In conclusion, a long-term caffeine-induced sleep restriction affected the diversity and composition of the intestinal microbiota in mice, and substantially altered the metabolic profiles of the gut microbiome. This may represent a novel mechanism by which an unhealthy lifestyle such as mistimed coffee breaks lead to or exacerbates disease.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Camundongos , Animais , Cafeína/farmacologia , Fezes/microbiologia , Metaboloma , Bactérias/genética , Proteobactérias , Sono , RNA Ribossômico 16S/genética
10.
Indian J Microbiol ; 62(3): 374-383, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35974910

RESUMO

Purpose: To investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E). Patients and methods: (1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy. Results: Mtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy. Conclusion: Anti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01003-2.

11.
J Proteome Res ; 20(9): 4487-4494, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34435490

RESUMO

With the increasing knowledge about the important roles of gut microbiota on the biological system, a systematic strategy to profile the fecal metabolome is urgently needed. Thus, an unbiased, efficient, and reproducible fecal metabolite extraction protocol needs to be established; however, the effect of biphasic extraction methods for the fecal samples remains unclear. In this study, five different methods were assessed in the extraction of polar and non-polar metabolites for the liquid chromatography-mass spectrometry (LC-MS)-based mouse fecal metabolomic study. First, the detection coverage of two extraction systems, the Bligh and Dyer extraction method (M1, chloroform/methanol/water, 2/2/1.8) and Matyash method (M2, methyl tert-butyl ether (MTBE)/methanol/water, 10/3/2.5), was compared; then, MTBE/methanol/water system with different solvent ratios (M3, 2.6/2.0/2.4; M4, 4.5/1/2.5; and M5, 3/2.5/2.5) were further evaluated. The results showed that M2 showed higher detection coverage than M1. For the MTBE/methanol/water system with different solvent ratios, M3 showed the largest detection coverage based on peak numbers and numbers of putatively annotated metabolites, while M4 presented the least overlap between two phases, higher peak intensities of metabolites, and superior reproducibility. Based on the above evidence, M4 was recommended for the biphasic extraction of fecal metabolites in the LC-MS-based mouse fecal metabolomic study.


Assuntos
Metaboloma , Metabolômica , Animais , Cromatografia Líquida , Espectrometria de Massas , Camundongos , Reprodutibilidade dos Testes
12.
J Proteome Res ; 20(7): 3642-3653, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34048241

RESUMO

The human fecal metabolome is increasingly studied to explore the impact of diet and lifestyle on health and the gut microbiome. However, systematic differences and confounding factors related to age, sex, and diet remain largely unknown. In this study, absolute concentrations of fecal metabolites from 205 healthy Danes (105 males and 100 females, 49 ± 31 years old) were quantified using 1H NMR spectroscopy and the newly developed SigMa software. The largest systemic variation was found to be highly related to age. Fecal concentrations of short-chain fatty acids (SCFA) were higher in the 18 years old group, while amino acids (AA) were higher in the elderly. Sex-related metabolic differences were weak but significant and mainly related to changes in SCFA. The concentrations of butyric, valeric, propionic, and isovaleric acids were found to be higher in males compared to females. Sex differences were associated with a stronger, possibly masking, effect from differential intake of macronutrients. Dietary fat intake decreased levels of SCFA and AA of both sexes, while carbohydrate intake showed weak correlations with valeric and isovaleric acids in females. This study highlights some possible demographic confounders linked to diet, disease, lifestyle, and microbiota that have to be taken into account when analyzing fecal metabolome data.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Dieta , Fezes , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Int J Med Microbiol ; 311(5): 151513, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34147944

RESUMO

Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Fezes , Humanos , Metaboloma , Enxofre
14.
BMC Microbiol ; 21(1): 226, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384375

RESUMO

BACKGROUND: Gut microbiota (GMB) alteration has been reported to influence the Alzheimer's disease (AD) pathogenesis through immune, endocrine, and metabolic pathways. This study aims to investigate metabolic output of the dysbiosis of GMB in AD pathogenesis. In this study, the fecal microbiota and metabolome from 21 AD participants and 44 cognitively normal control participants were measured. Untargeted GMB taxa was analyzed through 16S ribosomal RNA gene profiling based on next-generation sequencing and fecal metabolites were quantified by using ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). RESULTS: Our analysis revealed that AD was characterized by 15 altered gut bacterial genera, of which 46.7% (7/15 general) was significantly associated with a series of metabolite markers. The predicted metabolic profile of altered gut microbial composition included steroid hormone biosynthesis, N-Acyl amino acid metabolism and piperidine metabolism. Moreover, a combination of 2 gut bacterial genera (Faecalibacterium and Pseudomonas) and 4 metabolites (N-Docosahexaenoyl GABA, 19-Oxoandrost-4-ene-3,17-dione, Trigofoenoside F and 22-Angeloylbarringtogenol C) was able to discriminate AD from NC with AUC of 0.955 in these 65 subjects. CONCLUSIONS: These findings demonstrate that gut microbial alterations and related metabolic output changes may be associated with pathogenesis of AD, and suggest that fecal markers might be used as a non-invasive examination to assist screening and diagnosis of AD.


Assuntos
Doença de Alzheimer/microbiologia , Bactérias/genética , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metaboloma , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Bactérias/patogenicidade , Cromatografia Líquida , Disbiose/complicações , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Metabolômica/métodos , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
15.
Metabolomics ; 17(7): 66, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34228201

RESUMO

INTRODUCTION: In humans and companion animals, obesity is accompanied by metabolic derangements. Studies have revealed differences in the composition of the fecal microbiome between obese dogs and those with an ideal body weight. OBJECTIVES: We have previously reported that the fecal microbiome in obese dogs changes after controlled weight reduction, induced by feeding a diet high in fiber and protein. Despite these findings, it is unclear if taxonomic differences infer differences at the functional level between obese dogs and those with an ideal body weight. METHODOLOGY: Untargeted fecal metabolome analysis was performed on dogs with obesity before and after weight loss achieved by feeding a high-fiber-high-protein diet. RESULTS: Fecal metabolome analysis revealed a total of 13 compounds that changed in concentration in obese dogs after weight loss. Of these compounds, metabolites associated with bacterial metabolism decreased after weight loss including purine, L-(-)-methionine, coumestrol, and the alkaloids 1-methylxanthine and trigonelline. Conversely, the polyphenols (-)-epicatechin and matairesinol and the quinoline derivatives 1,5-isoquinolinediol and 2-hydroxiquinoline increased after weight loss. CONCLUSION: These results suggest differences in intestinal microbiome at the functional level after weight loss, but further studies are needed to determine the role of these compounds in the etiology of obesity and weight loss.


Assuntos
Dieta Rica em Proteínas , Microbioma Gastrointestinal , Animais , Fibras na Dieta , Cães , Metaboloma , Obesidade/dietoterapia , Redução de Peso
16.
J Proteome Res ; 19(2): 845-853, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31873020

RESUMO

Traditional measures of short-term stress response such as fecal glucocorticoid metabolites (FGM) are widely used in controlled settings to quantify the intensity of stimulation to which cattle are exposed. However, FGMs present several methodological and interpretation pitfalls when applied on animals in free-ranging conditions. In this study, we proposed an NMR-based fecal metabolomics strategy for noninvasive stress detection in beef cattle. Using a longitudinal sample collection, we monitored the changes in the fecal metabolome and FGM concentrations before and after an acute stressful event. Our results showed that while the fecal metabolome changed as a function of stress (p < 0.001), the mean concentrations of FGM did not change (Levene's test: F-ratio: 0.87, p-value: 0.44). Furthermore, we showed that the interanimal variability observed in the stress response was correlated with the individual fecal microbiota. This result was in line with recent findings, indicating the gut microbiome as a crucial mediator of stress response. We conclude that NMR-based fecal metabolomics proved to be a reliable methodology to assess stress response and that its future applicability to studies for stress monitoring in range animals may be more appropriate than FGM analysis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bovinos , Fezes , Metaboloma , Metabolômica
17.
Metabolomics ; 16(4): 48, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32274593

RESUMO

INTRODUCTION: Crohn's disease (CD) is a chronic, relapsing inflammatory bowel disease affecting the gastrointestinal tract. Although its precise etiology has not been fully elucidated, an imbalance of the intestinal microbiota has been known to play a role in CD. Fecal metabolites derived from microbiota may be related to the onset and progression of CD OBJECTIVES: This study aimed to clarify the transition of gut microbiota and fecal metabolites associated with disease progression using SAMP1/YitFc mice, a model of spontaneous CD METHODS: The ileum tissues isolated from SAMP1/YitFc mice at different ages were stained with hematoxylin-eosin for histologic characterization with CD progression. Feces from control, Institute of Cancer Research (ICR; n = 6), and SAMP1/YitFc (n = 8) mice at different ages were subjected to microbial analysis and 1H nuclear magnetic resonance (NMR) analysis to investigate fluctuations in gut microbiota and fecal metabolites with CD progression RESULTS: Relative abundance of the Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Bacteroidales S24-7 at family-level gut microbiota and fecal metabolites, such as short-chain fatty acids, lactate, glucose, xylose, and choline, dramatically fluctuated with histologic progression of intestinal inflammation in SAMP1/YitFc mice. Unlike the other metabolites, fecal taurine concentration in SAMP1/YitFc mice was higher than ICR mice regardless of age CONCLUSION: The fecal metabolites showing characteristic fluctuations may help to understand the inflammatory mechanism associated with CD, and might be utilized as potential biomarkers in predicting CD pathology.


Assuntos
Doença de Crohn/metabolismo , Modelos Animais de Doenças , Fezes/microbiologia , Metabolômica , Animais , Doença de Crohn/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Mutantes
18.
Sci Total Environ ; 912: 169330, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135079

RESUMO

Initially considered a "safe" substitute for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been extensively used in the production of fluoropolymers for several years, leading to its environmental ubiquity and subsequent discovery of its significant bio-accumulative properties and toxicological effects. However, the specific impact of HFPO-TA on females, particularly those who are pregnant, remains unclear. In the present study, pregnant mice were exposed to 0.63 mg/kg/day HFPO-TA from gestational day (GD) 2 to GD 18. We then determined the potential effects of exposure on gut microbiota and fecal metabolites at GD 12 (mid-pregnancy) and GD 18 (late pregnancy). Our results revealed that, in addition to liver damage, HFPO-TA exposure during the specified window altered the structure and function of cecal gut microbiota. Notably, these changes showed the opposite trends at GD 12 and GD 18. Specifically, at GD 12, HFPO-TA exposure primarily resulted in the down-regulation of relative abundances within genera from the Bacteroidetes and Proteobacteria phyla, as well as associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. With extended exposure time, the down-regulated genera within Proteobacteria became significantly up-regulated, accompanied by corresponding up-regulation of human disease- and inflammation-associated pathways, suggesting that HFPO-TA exposure can induce intestinal inflammation and elevate the risk of infection during late pregnancy. Pearson correlation analysis revealed that disturbances in the gut microbiota were accompanied by abnormal fecal metabolite. Additionally, alterations in hormones related to the steroid hormone biosynthesis pathway at both sacrifice time indicated that HFPO-TA exposure might change the steroid hormone level of pregnant mice, but need further study. In conclusion, this study provides new insights into the mechanisms underlying HFPO-TA-induced adverse effects and increases awareness of potential persistent health risks to pregnant females.


Assuntos
Fluorocarbonos , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Propionatos , Feminino , Gravidez , Camundongos , Animais , Humanos , Fluorocarbonos/toxicidade , Homeostase , Metaboloma , Proteobactérias , Hormônios , Inflamação , Esteroides
19.
mSphere ; 9(7): e0030124, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38884486

RESUMO

With the rapid growth of inland aquaculture worldwide, side effects such as the discharge of nutrients and antibiotics pose a threat to the global environments. A sustainable future for aquaculture requires an effective management system, including the early detection of disease through the monitoring of specific biomarkers in aquaculture tanks. To this end, we investigated whether fish feces in aquaculture tanks could be used for non-invasive health monitoring using ayu (Plecoglossus altivelis) infected with Flavobacterium psychrophilum, which causes bacterial cold-water disease worldwide. Feces that were subsequently produced in the tanks were used for metagenomic and metabolomic analyses. The relative abundances of the genera Cypionkella (0.6% ± 1.0%, 0.1% ± 0.2%), Klebsiella (11.2% ± 10.0%, 6.2% ± 5.9%), and F. psychrophilum (0.5% ± 1.0%, 0.0% ± 0.0%) were significantly higher in the feces of the infection challenge test tanks than in those of the control tanks. The abundances of cortisol, glucose, and acetate in the feces of the infection challenge test tanks were 2.4, 2.4, and 1.3 times higher, respectively, than those of the control tanks. Metagenome analysis suggested that acetate was produced by microbes such as Cypionkella. The abundances of indicated microbes or metabolites increased after day 4 of infection at the earliest, and were thus considered possible biomarkers. Our results suggest that feces produced in aquaculture tanks can potentially be used for non-invasive and holistic monitoring of fish diseases in aquaculture systems. IMPORTANCE: The aquaculture industry is rapidly growing, yet sustainability remains a challenge. One crucial task is to reduce losses due to diseases. Monitoring fish health and detecting diseases early are key to establishing sustainable aquaculture. Using metagenomic and metabolomic analyses, we found that feces of ayu infected with Flavobacterium psychrophilum contain various specific biomarkers that increased 4 days post-challenge, at the earliest. Our findings are the first step in establishing a novel, non-invasive, and holistic monitoring method for fish diseases in aquaculture systems, especially in ayu, which is an important freshwater fish species in Asia, promoting a sustainable future.


Assuntos
Aquicultura , Biomarcadores , Fezes , Doenças dos Peixes , Infecções por Flavobacteriaceae , Flavobacterium , Metabolômica , Metagenômica , Osmeriformes , Animais , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia , Fezes/microbiologia , Osmeriformes/microbiologia , Doenças dos Peixes/microbiologia , Biomarcadores/análise , Metagenômica/métodos , Metabolômica/métodos
20.
Microbiol Spectr ; 12(6): e0350923, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38647334

RESUMO

In view of the safety concerns of probiotics, more and more attention is paid to the beneficial effects of dead probiotics cells. Herein, we investigated and compared the alleviation effects of viable Bifidobacterium longum subsp. infantis B8762 (B. infantis B8762) and its heat-killed cells on dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD) rats. Four groups of rats (n = 12 per group) were included: normal control, DSS-induced colitis rats without bacterial administration (DSS), DSS-induced colitis rats with viable B. infantis B8762 administration (VB8762), and DSS-induced colitis rats with dead B. infantis B8762 administration (DB8762). Our results showed that both VB8762 and DB8762 administration exerted significant protective effects on DSS-induced IBD rats, as evidenced by a reduction in mortality, disease activity index score, body weight loss, as well as decreased histology score, which were companied by a significant decrease in serum pro-inflammatory factors compared with DSS group, and a stronger effect on modulating the fecal microbiota alpha-diversity and beta-diversity compared with DSS group. Additionally, the fecal metabolome results showed that both VB8762 and DB8762 interventions indeed altered the fecal metabolome profile and related metabolic pathways of DSS-induced IBD rats. Therefore, given the alleviation effects on colitis, the DB8762 can be confirmed to be a postbiotic. Overall, our findings suggested that VB8762 and DB8762 had similar ability to alleviate IBD although with some differences. Due to the minimal safety concern of postbiotics, we propose that the postbiotic DB8762 could be a promising alternative to probiotics to be applied in the prevention and treatment of IBDs.IMPORTANCEInflammatory bowel disease (IBD) has emerged as a global disease because of the worldwide spread of western diets and lifestyles during industrialization. Up to now, many probiotic strains are used as a modulator of gut microbiota or an enhancer of gut barrier to alleviate or cure IBD. However, there are still many issues of using probiotics, which were needed to be concerned about, for instance, safety issues in certain groups like neonates and vulnerable populations, and the functional differences between viable and dead microorganisms. Therefore, it is of interest to investigate the beneficial effects of dead probiotics cells. The present study proved that both viable Bifidobacterium longum subsp. infantis B8762 and heat-killed cells could alleviate dextran sodium sulfate-induced colitis in rats. The findings help to support that some heat-killed probiotics cells can also exert relevant biological functions and can be used as a postbiotic.


Assuntos
Bifidobacterium longum subspecies infantis , Sulfato de Dextrana , Fezes , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Animais , Probióticos/administração & dosagem , Ratos , Sulfato de Dextrana/toxicidade , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Masculino , Fezes/microbiologia , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Inflamação , Temperatura Alta , Humanos , Bifidobacterium longum
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa