Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nano Lett ; 24(15): 4376-4382, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591335

RESUMO

Embedding rare-earth monopnictide nanoparticles into III-V semiconductors enables unique optical, electrical, and thermal properties for THz photoconductive switches, tunnel junctions, and thermoelectric devices. Despite the high structural quality and control over growth, particle size (<3 nm), and density, the underlying electronic structure of these nanocomposite materials has only been hypothesized. Structural and electronic properties of ErAs nanoparticles with different shapes and sizes (cubic to spherical, 1.14, 1.71, and 2.28 nm) in AlAs, GaAs, InAs, and their alloys are investigated using first-principles calculations, revealing that spherical nanoparticles have lower formation energies. For the lowest-energy nanoparticles, the Fermi level is pinned near midgap in GaAs and AlAs but resonant in the conduction band in InAs. The Fermi level is shifted down as the particle size increases and is pinned on an absolute energy scale considering the band alignment at AlAs/GaAs/InAs interfaces, offering insights into the rational design of these nanomaterials.

2.
Small ; 20(7): e2306513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803425

RESUMO

With the rapid development of performance and long-term stability, bismuth vanadate (BiVO4 ) has emerged as the preferred photoanode in photoelectrochemical tandem devices. Although state-of-the-art BiVO4 photoanodes realize a saturated photocurrent density approaching the theoretical maximum, the fill factor (FF) is still inferior, pulling down the half-cell applied bias photon-to-current efficiency (HC-ABPE). Among the major fundamental limitations are the Fermi level pinning and sluggish surface kinetics at the low applied potentials. This work demonstrates that the plasma-assisted atomic layer deposition technique is capable of addressing these issues by seamlessly installing an angstrom-scale FeNi-layer between BiVO4 and electrolyte. Not only this ultrathin FeNi layer serves as an efficient OER cocatalyst, more importantly, it also effectively passivates the surface states of BiVO4 , de-pins the surface Fermi level, and enlarges the built-in voltage, allowing the photoanode to make optimal use of the photogenerated holes for achieving high FF up to 44% and HC-ABPE to 2.2%. This study offers a new approach for enhancing the FF of photoanodes and provides guidelines for designing efficient unassisted solar fuel devices.

3.
Small ; 20(40): e2402474, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38822710

RESUMO

Although WO3 exhibits both electrochromic and photoelectrochemical (PEC) properties, there is no research conducted to investigate the correlation between them. The study herein reports the electrochromic enhancement of PEC activity on WO3. The electrochromic WO3 (e-WO3) exhibits a significantly enhanced activity for PEC water oxidation compared to raw WO3 (r-WO3), with a limiting photocurrent density three times that of r-WO3. The electrochromic enhancement of PEC activity is universal and independent of the type of cations inserted during electrochromism. Decoloring reduces the PEC activity but a simple re-coloring restores the activity to its maximum value. Electrochromism induces large amounts of oxygen vacancies and surface states, the former improving the electron density of WO3 and the latter facilitating the hole transfer across e-WO3/electrolyte interface. It is proved that the electrochromic enhancement effect is due to the significantly improved electron-hole separation efficiency and the charge transfer efficiency across the WO3/electrolyte interface.

4.
Small ; 20(43): e2403118, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38990881

RESUMO

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are extensively employed as channel materials in advanced electronic devices. The electrical contacts between electrodes and 2D semiconductors play a crucial role in the development of high-performance transistors. While numerous strategies for electrode interface engineering have been proposed to enhance the performance of n-type 2D transistors, upgrading p-type ones in a similar manner remains a challenge. In this work, significant improvements in a p-type WSe2 transistor are demonstrated by utilizing metallic MoO2 nanosheets as the electrode contact, which are controllably fabricated through physical vapor deposition and subsequent annealing. The MoO2 nanosheets exhibit an exceptional electrical conductivity of 8.4 × 104 S m‒1 and a breakdown current density of 3.3 × 106 A cm‒2. The work function of MoO2 nanosheets is determined to be ≈5.1 eV, making them suitable for contacting p-type 2D semiconductors. Employing MoO2 nanosheets as the electrode contact in WSe2 transistors results in a notable increase in the field-effect mobility to 92.0 cm2 V‒1 s‒1, which is one order of magnitude higher than the counterpart devices with conventional electrodes. This study not only introduces an intriguing 2D metal oxide to improve the electrical contact in p-type 2D transistors, but also offers an effective approach to fabricating all-2D devices.

5.
Small ; 20(22): e2307346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213011

RESUMO

α-In2Se3 semiconductor crystals realize artificial synapses by tuning in-plane and out-of-plane ferroelectricity with diverse avenues of electrical and optical pulses. While the electrically induced ferroelectricity of α-In2Se3 shows synaptic memory operation, the optically assisted synaptic plasticity in α-In2Se3 has also been preferred for polarization flipping enhancement. Here, the synaptic memory behavior of α-In2Se3 is demonstrated by applying electrical gate voltages under white light. As a result, the induced internal electric field is identified at a polarization flipped conductance channel in α-In2Se3/hexagonal boron nitride (hBN) heterostructure ferroelectric field effect transistors (FeFETs) under white light and discuss the contribution of this built-in electric field on synapse characterization. The biased dipoles in α-In2Se3 toward potentiation polarization direction by an enhanced internal built-in electric field under illumination of white light lead to improvement of linearity for long-term depression curves with proper electric spikes. Consequently, upon applying appropriate electric spikes to α-In2Se3/hBN FeFETs with illuminating white light, the recognition accuracy values significantly through the artificial learning simulation is elevated for discriminating hand-written digit number images.

6.
Nano Lett ; 23(22): 10473-10479, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930154

RESUMO

Molecular junctions are potentially highly efficient devices for thermal energy harvesting since their transmission properties can be tailored to break electron-hole transport symmetry and consequently yield high Seebeck and Peltier coefficients. Full harnessing of this potential requires, however, a capability to precisely position their Fermi level within the transmission landscape. Currently, with the lack of such a "knob" for two-lead junctions, their thermoelectric performance is too low for applications. Here we report that the requested capability can be realized by using junctions with a semimetal lead and molecules with a tailored effect of their monolayers on the work function of the semimetal. The approach is demonstrated by junctions with monolayers of alkanethiols on bismuth (Bi). Fermi-level tuning enables in this case increasing the Seebeck coefficient by more than 2 orders of magnitude. The underlying mechanism of this capability is discussed, as well as its general applicability.

7.
Nano Lett ; 23(21): 9740-9747, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879097

RESUMO

Exciton localization through nanoscale strain has been used to create highly efficient single-photon emitters (SPEs) in 2D materials. However, the strong Coulomb interactions between excitons can lead to nonradiative recombination through exciton-exciton annihilation, negatively impacting SPE performance. Here, we investigate the effect of Coulomb interactions on the brightness, single photon purity, and operating temperatures of strain-localized GaSe SPEs by using electrostatic doping. By gating GaSe to the charge neutrality point, the exciton-exciton annihilation nonradiative pathway is suppressed, leading to ∼60% improvement of emission intensity and an enhancement of the single photon purity g(2)(0) from 0.55 to 0.28. The operating temperature also increased from 4.5 K to 85 K consequently. This research provides insight into many-body interactions in excitons confined by nanoscale strain and lays the groundwork for the optimization of SPEs for optoelectronics and quantum photonics.

8.
Small ; 19(44): e2303675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381648

RESUMO

Van der Waals (vdW) metal-semiconductor junctions (MSJs) exhibit huge potential to reduce the contact resistance and suppress the Fermi-level pinning (FLP) for improving the device performance, but they are limited by optional (2D) metals with a wide range of work functions. Here a new class of vdW MSJs entirely composed of atomically thin MXenes is reported. Using high-throughput first-principles calculations, highly stable 80 metals and 13 semiconductors are screened from 2256 MXene structures. The selected MXenes cover a broad range of work functions (1.8-7.4 eV) and bandgaps (0.8-3 eV), providing a versatile material platform for constructing all-MXene vdW MSJs. The contact type of 1040 all-MXene vdW MSJs based on Schottky barrier heights (SBHs) is identified. Unlike conventional 2D vdW MSJs, the formation of all-MXene vdW MSJs leads to interfacial polarization, which is responsible for the FLP and deviation of SBHs from the prediction of Schottky-Mott rule. Based on a set of screening criteria, six Schottky-barrier-free MSJs with weak FLP and high carrier tunneling probability (>50%) are identified. This work offers a new way to realize vdW contacts for the development of high-performance electronic and optoelectronic devices.

9.
Nanotechnology ; 34(29)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071989

RESUMO

With the speed of industrialization accelerating, the traditional energy is in the predicament of being exhausted. Humans urgently need a clean energy to maintain the peace and development. Triboelectric nanogenerator (TENG) is a tiny device that collects and converts the renewable energy, such as wind, vibration and tidal/blue energy, into electrical energy. As the most significant working principle of TENG, contact electrification (CE) has been broadly studied since it was documented thousands of years ago. A large number of related researches are reported. However, most of them are focused on the polymer materials, device structures and potential applications. There are few literatures about the mechanism of CE, especially in the semiconductor-semiconductor case. Semiconductor-semiconductor CE is a promising method to generate electricity, which has been used in many fields, such as the photodetector and displacement sensor. Therefore, it is necessary to establish a serious and detailed theory in order to deeply explain the underlying mechanisms of semiconductor-semiconductor CE. In this work, a novel Fermi level model based on energy band theory is proposed to illustrate the semiconductor-semiconductor CE mechanism. By assembling a ZnO/Si vertical contact-separation (CS) mode TENG, the charge transfer introduced by CE is systematically measured. According to the energy band theory and TENG governing equation, the experimental data is qualitatively and quantitatively analyzed. Moreover, the effects of different concentrations of growth solutions on the morphology of ZnO nanowires and the Fermi level difference between ZnO and Si are explored as well. Results show that it is the Fermi level difference that dominates the short circuit transfer charge amount and direction of semiconductor-semiconductor CE mechanism. Our work can be applied to understand the CE mechanism in semiconductor-semiconductor case and broaden the application prospects of semiconductor-based TENG.

10.
Nanotechnology ; 34(11)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36595314

RESUMO

Semiconducting piezoelectric nanowires (NWs) are promising candidates to develop highly efficient mechanical energy transducers made of biocompatible and non-critical materials. The increasing interest in mechanical energy harvesting makes the investigation of the competition between piezoelectricity, free carrier screening and depletion in semiconducting NWs essential. To date, this topic has been scarcely investigated because of the experimental challenges raised by the characterization of the direct piezoelectric effect in these nanostructures. Here we get rid of these limitations using the piezoresponse force microscopy technique in DataCube mode and measuring the effective piezoelectric coefficient through the converse piezoelectric effect. We demonstrate a sharp increase in the effective piezoelectric coefficient of vertically aligned ZnO NWs as their radius decreases. We also present a numerical model which quantitatively explains this behavior by taking into account both the dopants and the surface traps. These results have a strong impact on the characterization and optimization of mechanical energy transducers based on vertically aligned semiconducting NWs.

11.
Proc Natl Acad Sci U S A ; 117(19): 10142-10148, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32327607

RESUMO

The splitting of quasi-Fermi levels (QFLs) represents a key concept utilized to describe finite-bias operations of semiconductor devices, but its atomic-scale characterization remains a significant challenge. Herein, the nonequilibrium QFL or electrochemical potential profiles within single-molecule junctions obtained from the first-principles multispace constrained-search density-functional formalism are presented. Benchmarking the standard nonequilibrium Green's function calculation results, it is first established that algorithmically the notion of separate electrode-originated nonlocal QFLs should be maintained within the channel region during self-consistent finite-bias electronic structure calculations. For the insulating hexandithiolate junction, the QFL profiles exhibit discontinuities at the left and right electrode interfaces and across the molecule the accompanying electrostatic potential drops linearly and Landauer residual-resistivity dipoles are uniformly distributed. For the conducting hexatrienedithiolate junction, on the other hand, the electrode QFLs penetrate into the channel region and produce split QFLs. With the highest occupied molecular orbital entering the bias window and becoming a good transport channel, the split QFLs are accompanied by the nonlinear electrostatic potential drop and asymmetric Landauer residual-resistivity dipole formation. Our findings underscore the importance of the first-principles extraction of QFLs in nanoscale junctions and point to a future direction for the computational design of next-generation semiconductor devices.

12.
Angew Chem Int Ed Engl ; 62(25): e202301065, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37017550

RESUMO

Platinum is the best electrocatalyst for the hydrogen evolution reaction (HER). Here, we demonstrate that by contact electrification of Pt nanoparticle satellites on a gold or silver core, the Fermi level of Pt can be tuned. The electronic properties of Pt in such hybrid nanocatalysts were experimentally characterized by X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) with the probe molecule 2,6-dimethyl phenyl isocyanide (2,6-DMPI). Our experimental findings are corroborated by a hybridization model and density functional theory (DFT) calculations. Finally, we demonstrate that tuning of the Fermi level of Pt results in reduced or increased overpotentials in water splitting.


Assuntos
Nanopartículas Metálicas , Platina , Platina/química , Nanopartículas Metálicas/química , Hidrogênio/química , Ouro/química , Análise Espectral Raman/métodos
13.
Angew Chem Int Ed Engl ; 62(9): e202217026, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36577697

RESUMO

Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.

14.
Small ; 18(24): e2201840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561072

RESUMO

Germanium (Ge)-based devices are recognized as one of the most promising next-generation technologies for extending Moore's law. However, one of the critical issues is Fermi-level pinning (FLP) at the metal/n-Ge interface, and the resulting large contact resistance seriously degrades their performance. The insertion of a thin layer is one main technique for FLP modulation; however, the contact resistance is still limited by the remaining barrier height and the resistance induced by the insertion layer. In addition, the proposed depinning mechanisms are also controversial. Here, the authors report a wafer-scale carbon nanotube (CNT) insertion method to alleviate FLP. The inserted conductive film reduces the effective Schottky barrier height without inducing a large resistance, leading to ohmic contact and the smallest contact resistance between a metal and a lightly doped n-Ge. These devices also indicate that the metal-induced gap states mechanism is responsible for the pinning. Based on the proposed technology, a wafer-scale planar diode array is fabricated at room temperature without using the traditional ion-implantation and annealing technology, achieving an on-to-off current ratio of 4.59 × 104 . This work provides a new way of FLP modulation that helps to improve device performance with new materials.

15.
Nanotechnology ; 33(34)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576894

RESUMO

The metal/germanium (Ge) photodetectors have attracted much attention for their potential applications in on-chip optoelectronics. One critical issue is the relatively large dark current due to the limited Schottky potential barrier height of the metal/germanium junction, which is mainly caused by the small bandgap of Ge and the Fermi energy level pinning effect between the metal and Ge. The main technique to solve this problem is to insert a thin interlayer between the metal and Ge. However, so far, the dark current of the photodetectors is still large when using a bulk-material insertion layer, while when using a two-dimensional insertion layer, the area of the insertion layer is too small to support a mass production. Here, we report a gold/graphene/germanium photodetector with a wafer-scale graphene insertion layer using a 4 inch graphene-on-germanium wafer. The insertion layer significantly increases the potential barrier height, leading to a dark current as low as 1.6 mA cm-2, and a responsivity of 1.82 A W-1which are the best results for metal/Ge photodetectors reported so far. Our work contributes to the mass production of high-performance metal/Ge photodetectors.

16.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35172287

RESUMO

Chemical vapor deposition (CVD)-grown monolayer (ML) molybdenum disulfide (MoS2) is a promising material for next-generation integrated electronic systems due to its capability of high-throughput synthesis and compatibility with wafer-scale fabrication. Several studies have described the importance of Schottky barriers in analyzing the transport properties and electrical characteristics of MoS2field-effect-transistors (FETs) with metal contacts. However, the analysis is typically limited to single devices constructed from exfoliated flakes and should be verified for large-area fabrication methods. In this paper, CVD-grown ML MoS2was utilized to fabricate large-area (1 cm × 1 cm) FET arrays. Two different types of metal contacts (i.e. Cr/Au and Ti/Au) were used to analyze the temperature-dependent electrical characteristics of ML MoS2FETs and their corresponding Schottky barrier characteristics. Statistical analysis provides new insight about the properties of metal contacts on CVD-grown MoS2compared to exfoliated samples. Reduced Schottky barrier heights (SBH) are obtained compared to exfoliated flakes, attributed to a defect-induced enhancement in metallization of CVD-grown samples. Moreover, the dependence of SBH on metal work function indicates a reduction in Fermi level pinning compared to exfoliated flakes, moving towards the Schottky-Mott limit. Optical characterization reveals higher defect concentrations in CVD-grown samples supporting a defect-induced metallization enhancement effect consistent with the electrical SBH experiments.

17.
Nano Lett ; 21(15): 6592-6599, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34291936

RESUMO

We highlight a new metal-molecule charge transfer process by tuning the Fermi energy of plasmonic silver nanoparticles (AgNPs) in situ. The strong adsorption of halide ions upshifts the Fermi level of AgNPs by up to ∼0.3 eV in the order Cl- < Br- < I-, favoring the spontaneous charge transfer to aligned molecular acceptor orbitals until charge neutrality across the interface is achieved. By carefully quantifying, experimentally and theoretically, the Fermi level upshift, we show for the first time that this effect is comparable in energy to different plasmonic effects such as the plasmoelectric effect or hot-carriers production. Moreover, by monitoring in situ the adsorption dynamic of halide ions in different AgNP-molecule systems, we show for the first time that the catalytic role of halide ions in plasmonic nanostructures depends on the surface affinity of halide ions compared to that of the target molecule.

18.
Nano Lett ; 21(20): 8770-8776, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34653333

RESUMO

The spatial arrangement of adsorbates deposited onto a clean surface under vacuum typically cannot be reversibly tuned. Here we use scanning tunneling microscopy to demonstrate that molecules deposited onto graphene field-effect transistors (FETs) exhibit reversible, electrically tunable surface concentration. Continuous gate-tunable control over the surface concentration of charged F4TCNQ molecules was achieved on a graphene FET at T = 4.5K. This capability enables the precisely controlled impurity doping of graphene devices and also provides a new method for determining molecular energy level alignment based on the gate-dependence of molecular concentration. Gate-tunable molecular concentration is explained by a dynamical molecular rearrangement process that reduces total electronic energy by maintaining Fermi level pinning in the device substrate. The molecular surface concentration is fully determined by the device back-gate voltage, its geometric capacitance, and the energy difference between the graphene Dirac point and the molecular LUMO level.


Assuntos
Grafite , Capacitância Elétrica , Eletrônica , Microscopia de Tunelamento , Transistores Eletrônicos
19.
Nanotechnology ; 33(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34649226

RESUMO

In recent years, two-dimensional materials have received more and more attention in the development of semiconductor devices, and their practical applications in optoelectronic devices have also developed rapidly. However, there are still some factors that limit the performance of two-dimensional semiconductor material devices, and one of the most important is Ohmic contact. Here, we elaborate on a variety of approaches to achieve Ohmic contacts on two-dimensional materials and reveal their physical mechanisms. For the work function mismatch problem, we summarize the comparison of barrier heights between different metals and 2D semiconductors. We also examine different methods to solve the problem of Fermi level pinning. For the novel 2D metal-semiconductor contact methods, we analyse their effects on reducing contact resistance from two different perspectives: homojunction and heterojunction. Finally, the challenges of 2D semiconductors in achieving Ohmic contacts are outlined.

20.
Nano Lett ; 19(7): 4463-4469, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203633

RESUMO

The electronic properties of semiconductor AIIIBV nanowires (NWs) due to their high surface/volume ratio can be effectively controlled by NW strain and surface electronic states. We study the effect of applied tension on the conductivity of wurtzite InxGa1-xAs (x ∼ 0.8) NWs. Experimentally, conductive atomic force microscopy is used to measure the I-V curves of vertically standing NWs covered by native oxide. To apply tension, the microscope probe touching the NW side is shifted laterally to produce a tensile strain in the NW. The NW strain significantly increases the forward current in the measured I-V curves. When the strain reaches 4%, the I-V curve becomes almost linear, and the forward current increases by 3 orders of magnitude. In the latter case, the tensile strain is supposed to shift the conduction band minima below the Fermi level, whose position, in turn, is fixed by surface states. Consequently, the surface conductivity channel appears. The observed effects confirm that the excess surface arsenic is responsible for the Fermi level pinning at oxidized surfaces of III-As NWs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa