Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Inorg Biochem ; 247: 112338, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549473

RESUMO

NO binding to horse heart cytochrome c (hhcyt c) has been investigated as a function of pH by both optical absorption and EPR spectroscopies. Lowering pH from 3.5 to 1.5 induces: (i) a blue-shift of the maximum of the optical absorption spectrum in the Soret region from 415 to about 404 nm, and (ii) the appearance of a strong three hyperfine splitting in the gz region of the EPR spectrum. Both spectroscopic features indicate the cleavage of the proximal His18-Fe(II)-NO bond giving rise to the five-coordinated Fe(II)-NO species. By quantification of the relative weight for the six- and the five-coordinated component in the EPR spectra, the pKa value was determined. The apparent pKa of the proximal His Nε atom (1.8 ±â€¯0.1) is unusually low for a ferrous nitrosylated form since in all investigated ferrous NO-bound heme-proteins the pKa value for the cleavage of the proximal His-Fe(II) bond ranges between 3.7 and 5.8. The pKa value of ferrous nitrosylated hhcyt c indicates that the strength of the proximal His18-Fe(II) bond (= 27.9 kJ/mol) is about 10-22 kJ/mol higher than that observed in all investigated heme-proteins. The strong coordination of the heme-Fe atom by His18 is extremely important to maintain the redox efficiency of cyt c and to keep apoptosis under control. This is a crucial point in tissues, such as retina, where apoptosis might trigger macular degenerative processes.


Assuntos
Citocromos c , Heme , Animais , Cavalos , Citocromos c/química , Heme/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Compostos Ferrosos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa